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ABSTRACT 

Cancer is the second deadliest disease in the United States with an estimated 1.69 million 

new cases in 2017. Medical imaging modalities, such as computed tomography (CT) and 

magnetic resonance imaging (MRI), are widely used in clinical medicine to detect, diagnose, plan 

treatment, and monitor tumors within the body. Advances in imaging research related to cancer 

assessment have largely relied on consented human patients, often including varied populations 

and treatments. Tumor bearing mouse models have been highly valued for basic science research, 

but imaging focused applications are limited by the translational ability of micro imaging 

systems. Pig models are well suited to bridge the gap between human cohorts and mouse models 

due to similar anatomy, physiology, life-span, and size between pigs and humans. These models 

provide the opportunity to advance medical imaging while simultaneously characterizing 

progressive changes resulting from an intervention, exposure, or genetic modification. We present 

a foundation for effectively characterizing disease models in pigs, susceptible to tumor 

development, using longitudinal medical image acquisition and post-processing techniques for 

quantification of disease.  

Longitudinal, whole-body protocols were developed with CT and MRI. Focus was placed 

on systematic process, including transportation, anesthesia and positioning, imaging, and 

environmental controls. Demonstration of the methodology was achieved with six pigs (30-85 kg) 

with four to seven imaging time points acquired per animal. Consistent positioning across time 

points (CT to CT) and within time points (CT to MRI) was assessed with distance measures 

obtained from the skeleton following rigid registration between images. Alignment across time 

points was achieved with an average value of 16.51 (± 12.46) mm observed all acquired 

measurements. For consistent, retrievable, and complete qualitative assessment of acquired 

images, structured reports were developed, including assessment of imaging quality and emphasis 

on tumor development throughout the body. Reports were used to perform a systematic, semi-
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qualitative comparison of CT and MRI lung assessment with an overall agreement of 72% in 

detection of disease indicators.  

A multi-level registration algorithm was developed to align anatomic structures of 

interest in the acquired longitudinal datasets. The algorithm consisted of initialization followed by 

repeated application of a core registration framework as the input data reduced in image field of 

view. It was applied to align regions of interest in the brain, upper right lung, and right kidney. 

Validation was performed with overlap (range =   [0.0,1.0], complete overlap = 1) and distance 

measures (range = [0.0, ∞], perfect match = 0.0) of corresponding segmentations with overall 

results of 0.85 (± 0.11) and 0.41 (± 0.83) mm, respectively. An extension of the algorithm was 

created, demonstrating the ability to incorporate directional growth and feature extraction 

measurements into longitudinal tumor progression monitoring. Techniques were applied to a 

phantom dataset showing solid tumor growth and transition from a non-solid to part-solid lesion 

in the lungs.  

Finally, the developed methods – imaging, structured reporting, registration, and 

longitudinal feature extraction – were applied to four different porcine models pre-disposed to 

tumor development. 1) A genetically modified Li-Fraumeni (TP53R167H/+/TP53R167H/R167H) 

background model showing the development of osteosarcoma and lymphoma. 2) A TP53R167H/+ 

animal with exposure to crystalline silica showing progression of silicosis in the lungs. 3) 

TP53R167H/+/TP53R167H/R167H animals with exposure to radiation for targeted sarcoma development 

and 4) TP53R167H/+ pigs with conditional KRASG12D/+
 mutation activated in the lung and pancreas. 

Whole-body and targeted imaging protocols were developed for each model and qualitatively 

interpreted by a radiologist using structured reports. Multi-level registration was used to align 

identified tumors and longitudinal features were extracted to quantitatively track change over 

time. Overall, the developed methods aided in the effective, non-invasive characterization of 

these animals.   
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PUBLIC ABSTRACT 

Cancer is the second deadliest disease in the United States with an estimated 1.69 million 

new cases in 2017. Medical imaging systems are widely used in clinical medicine to non-

invasively identify, diagnosis, plan treatment, and monitor tumors within the body. Advances in 

imaging research related to cancer assessment have largely relied on consented human patients, 

often including varied populations and treatments. Tumor bearing mouse models have been 

highly valued for basic science research, but imaging focused applications are limited by the 

direct application of developed techniques. Pig models are well suited to bridge the gap between 

human patients and mouse models due to their biological similarly to humans. These models will 

allow researchers to methodically cross compare state of the art medical imaging procedure 

related to the early detection, diagnosis, monitoring, and treatment planning of cancer with direct 

application to clinical medicine.  

In this thesis, we have developed methods for longitudinal tracking of disease 

development in four tumor prone pig models using current clinical method imaging systems, 

computed tomography (CT) and magnetic resonance imaging (MRI). 

Following image acquisition, a reporting system was constructed for consistent, visual 

interpretation of images, image alignment was performed on identified tumors, and imaging 

characteristics were automatically extracted from tumors. Methods were applied to tumor prone 

pigs with additional exposure to known cancer causing agents. Detected cancers included bone 

and kidney tumors and lymphoma, and anticipated development of lung and pancreatic tumors.  
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CHAPTER 1:  INTRODUCTION 

Medical imaging technology has made great advances in the last thirty years becoming a 

key clinical tool for the non-invasive assessment of human disease. A study published in 2010 

reported an estimated number of imaging procedures ranging from 12 to 23 per patient diagnosed 

with a wide range of cancers within two years of diagnosis with increasing trends seen over a 6 

year period [1]. In general, imaging related to cancer has been used for screening programs to 

detect tumors early in high risk, non-symptomatic patients and for staging of cancer to identify 

the extent of disease and aid treatment planning. In addition, repeated imaging is used to 

longitudinally evaluate cancer following intervention with developed metrics to quantify tumor 

burden at each imaging time point. Post-acquisition, image processing algorithms have been 

developed for several applications including tumor segmentation, multi-modal fusion, and 

exploration of image biomarkers in cancer identification. 

 Medical imaging research related to detection, diagnosis and monitoring of tumors has 

relied largely on consented human patients and/or small animal models as research subjects.  

However, limitations exist in utilizing human patients, including varied populations, stages, 

comorbidities and treatment strategies. In mouse models, disparities exist in the technical 

capabilities of micro-imaging systems compared to equivalent clinical imaging systems, limiting 

their translational ability with regards to medical image protocols and data analysis. Pig models 

have emerged as surrogates for human disease due to their similar anatomy, physiology, life-span, 

and size to humans, bridging the gap between the small animal model and the human cohort. Pig 

models provide the opportunity to advance medical imaging while simultaneously characterizing 

progressive changes in the model that result from an intervention, exposure, or genetic 

modification. Specifically, repeated imaging of these models facilitates clinically translatable 

investigation of disease precursors, initiation, progression, and treatment response while 

providing a longitudinal database for post-acquisition processing development. Therefore, the 

goals of this research are to lay the foundation for effectively characterizing disease models in 

pigs using medical imaging techniques and developing longitudinal post-acquisition processes for 

quantification of disease. 

1.1 Specific aims 

To provide disease characterization in porcine models as surrogates of human disease, we 

propose three aims:  
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Aim 1: Develop imaging protocols for the characterization of the phenotype to 

genotype relationship in novel porcine disease models. Multi-modality imaging methods 

developed for whole-body, longitudinal disease screening of porcine disease models are presented 

in CHAPTER 3: LONGITUDINAL MEDICAL IMAGE ACQUISITION. These methods include 

several important considerations across a wide variety of disease models, including 

transportation, anesthesia, positioning, and environmental controls. 

Aim 2: Develop longitudinal post-acquisition image analysis methods for monitoring 

disease progression. Developed post-acquisition methods were separated into three areas of 

focus.  

1. Custom structured reporting methods for systematic qualitative assessment of disease are 

presented in CHAPTER 4: STRUCTURED REPORTING. 

2. A multi-level registration algorithm for alignment of whole-body, longitudinal datasets is 

presented in CHAPTER 5: MULTI-LEVEL REGISTRATION. 

3. Longitudinal feature extraction to assess directional growth and regional matching is 

presented in CHAPTER 6: LONGITUDINAL FEATURE EXTRACTION.  

 Aim 3: Utilize the developed medical imaging techniques to characterize tumorigenesis 

in a variety of genetically modified, cancer prone pig models. Our developed methods were 

applied to four different animal models. Generation of characterized models was focused on 

tumor development with emphasis in the lungs.  

1. A Li-Fraumeni heterozygote and homozygote base model is characterized in CHAPTER 

7: LI-FRAUMENI. 

2. Extension of this model with additional crystalline silica exposure in the lungs is 

presented in CHAPTER 8: CRYSTALLINE SILICA EXPOSURE MODEL. 

3. The Li-Fraumeni model with additional radiation exposure in the hind legs is presented in 

CHAPTER 9: RADIATION EXPOSURE MODEL. 

4. Additional conditional activation of genetic modifications to the KRAS oncogene in the 

lungs and pancreas in the Li-Fraumeni model is presented in CHAPTER 10: 

CONDITIONALLY ACTIVATED KRAS MODEL. 
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CHAPTER 2:  BACKGROUND AND SIGNIFICANCE 

2.1 Medical imaging 

Medical imaging has been widely used to aid in the diagnosis and evaluation of human 

cancers with greater benefits and applications as technology advances [2]. Due to its ability to 

assess physiologic structure and function, medical imaging can non-invasively assist in the 

detection, diagnosis and staging, and monitoring progression of tumor development. Given these 

advantages, medical imaging is continually being advanced for utilization in cancer management 

ranging from disease screening to evaluating progression.  

There are five main imaging modalities used in cancer management: x-ray and computed 

tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and 

ultrasound. In this work, we focus on the use of CT and MRI with future expansion to include 

PET.  

 

Computed tomography: CT uses x-ray technology to create a three-dimensional 

(volumetric) image of anatomy in the body. As x-rays pass through the body, they are attenuated 

depending on the tissues they interact with and their corresponding densities. The resulting image 

is then a density map of the anatomy with standardized voxel units of Hounsfield (HU), such that 

-1000 HU corresponds to the density of air and 0 HU to the density of water. It is widely used for 

clinical assessment due to its wide availability, fast scanning times, and high resolution 

capabilities. The major drawback of CT is the use of ionizing radiation, measured by radiation 

dose in milli-Gray (mGy). Significant research has focused on the acquisition of high quality 

images with low-dose protocols. These have included the use of tube current modulation [3, 4] 

and iterative reconstruction (IR) [5-7]. 

CT and x-ray technology are widely used in screening for early cancer detection. These 

screening programs involve imaging high risk patients at recommended intervals as a 

precautionary measure to detect cancer early. Biennial mammography, using traditional x-ray, for 

breast cancer screening has been recommended since 2009 [8]. Similarly, in 2014 the United 

States Preventative Services Task Force recommended annual screening to lung cancer with low-

dose CT [9]. The National Lung Screening Trial (NLST) has shown a 20% reduction in mortality 

through early detection of lung cancer [10] while various mammography studies have shown a 
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9% to 32% reduction in mortality due to breast cancer [8]. In 2016, CT was added to the potential 

tests in screening for colorectal cancer [11] with studies showing the potential for added benefit 

due to incidental findings in the widened imaging field of view compared to traditional 

colonoscopy [12].  

Magnetic resonance imaging: MRI is also a tomographic imaging modality that uses 

magnetic pulses to interrogate and obtain an image from different tissue properties. In traditional 

MRI, the detected signal is due to the relaxation of hydrogen atoms, called protons, back into 

alignment with a constantly applied magnetic field. The resulting image is then a map of protons 

corresponding to the specific relaxation property depending on the parameters of the acquisition 

protocol. The intensity of each voxel is dependent on the strength of the detected relaxation signal 

proportional to the size of the voxel and proton density of the tissues. Because of this, MRI excels 

at soft tissue contrast and does not required the use of ionizing radiation; however, there is 

typically a balance between acquisition time and quality of the image, specifically with respect to 

voxel resolution.  

The invention of MRI arose from the desire to detect signal differences between 

malignant and benign tissues as reported with nuclear magnetic resonance (NMR) [13, 14]. Since 

then, it has been used in cancer imaging making use of its functional imaging capabilities, 

particularly in the brain and soft tissues. It has also been investigated as a tool for breast cancer 

screening in patients with increased susceptibility supplemental to traditional mammography 

[15].  

Functional imaging: Several functional protocols have been developed to detect and 

predict malignancy. In CT, perfusion imaging has shown different values between malignant and 

benign process potentially identifying increased angiogenesis within in the tissue [16, 17]. MRI 

has also used perfusion imaging to characterize blood flow through tumors [18, 19]. These 

techniques involve injecting a contrast agent into the blood stream followed by repeated imaging 

to observe enhancement and clearance patterns in tissue. Diffusion weighted imaging (DWI) has 

also been used in MRI for differentiation of tissue. DWI measures the random diffusion of water 

molecules with the idea that less water diffusion occurs in tumors compared to surrounding tissue 

due to the extra structure [20]. Frequently, more than one MRI protocol is used for full 

characterization of tissues.  

While CT and MRI are used to assess anatomic structure with functional capabilities, 

PET imaging is a purely functional imaging modality. Images are obtained using a radioactive 
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compound, known as a radiotracer, which mimics a chemical compound frequently used in the 

body and decays. This decaying produces positrons that are detected by the scanner such that 

areas of high uptake of the tracer contain more signal than areas of low uptake. The most 

common radiotracer used in cancer imaging is F18-fluorodeoxyglucose (FDG) and mimics 

glucose, detecting areas of high metabolism, i.e. malignant processes [21]. Similarly, F18-

fluorodeoxythymidine (FLT) is an additional radiotracer that mimics thymidine used in DNA 

replication and is used to detect areas of high cell proliferation [22].  

Typically, PET is combined with CT or MRI to acquire simultaneous anatomic 

information and is most often used for staging of disease [23]. The combination of anatomical 

and functional modalities is crucial in identifying the extent of disease stratified into a specified 

stage, I through IV, based on three criteria: the size of the primary tumor (T), the extent of lymph 

node involvement (N), and the level of metastasis that has occurred (M) [24]. This TNM staging 

describes the severity of the cancer, disease prognosis, and directs treatment options with 

recommendations based on the type of cancer. In general, stage I and II cancers describe localized 

extent with minimal or local lymph node involvement. Stage III involves greater involvement 

farther from the primary location and stage IV describes the most involved cancer with metastasis 

to other organs.  

2.2 Imaging biomarkers 

Following image acquisition, many image processing algorithms have been developed to 

enhance access and quantification of the information contained within acquired images. At a 

basic level, thresholding is used during viewing of the images to specify a range of intensities 

providing adaptable contrast surrounding a desired structure; a process known as windowing. 

Automatic tumor identification and segmentation algorithms have been developed to isolate 

tumors from surrounding tissue for a variety of applications including surgery planning [25-28]. 

In general, segmentation of tumors is useful for the delineation from surrounding tissues followed 

by additional analysis, such as feature extraction. Registration has also been utilized as a stepping 

stone to further analysis, including multi-modal fusion and radiation treatment planning [29-31]. 

Overall, these developed algorithms have aided clinicians in gaining further insight into disease 

and how to proceed with treatment. In this work, we focus on the development of algorithms 

applied to longitudinal datasets, including image registration and feature extraction.  

Clinical criteria: Several quantitative markers have been developed to assess the 

progression of disease or tumor burden at each imaging time point. The most notable of these 



6 
 

measures are the World Health Organization (WHO) bi-dimensional measure [32] and the 

response evaluation criteria in solid tumors (RECIST) uni-dimensional measure – the current 

clinical standard [33, 34]. RECIST measurements include the largest diameter (in an axial image) 

of a specified number of tumors detected using CT and/or MRI. The overall tumor burden is 

compared across imaging and a progression outcome is determined: complete response, partial 

response, stable response, or disease progression. Limitations of RECIST include the varied 

reproducibility of measurements among radiologists leading to misclassification rates, concern 

over the use of a single, axial measurement as the representative criterion for a volumetric shape, 

and the growing use of targeted cancer therapies which may not follow the same traditional 

response pattern of progressive volume reduction [35].  

In an attempt to overcome the limitations of the RECIST, focus has been placed on 

volumetric analysis of estimated tumor burden over time [36, 37]. With the advent of many 

automatic segmentation algorithms, tumor volume is a more objective, quantitative measure that 

takes advantage of the three-dimensional nature of medical imaging. This type of analysis has 

shown promise as a better predictor of overall survival in lung cancer [38, 39] and liver cancer 

[40].  

Image registration: Image registration is an image processing technique that aligns two 

medical images into the same image space. Generally, an algorithm is comprised of four main 

components: an interpolator, an optimizer, a transform, and a similarity metric. With these 

elements, a moving image is iteratively transformed into alignment with the fixed image until a 

good match is found, defined by the similarity metric. Transforms are classified into rigid and 

non-rigid depending on the global or local deformation allowed during alignment. Goodness of a 

match is determined with  three main similarity metrics: sum of squared differences and 

normalization correlation coefficient primarily applied to monomodal registrations and mutual 

information most widely used for multimodal applications.  

Several registration algorithms have been developed aimed at tracking changes in tumor 

volume over time. Several algorithms have been focused on brain [41, 42], breast [43-45], and 

lung tumors [31]. In these instances, the results are used to infer information about tumor change. 

Additional work has extended the application to facilitate classification and targeted treatment 

planning to assess normal tissue and tumor tissue in liver cancer patients [46].  

Imaging biomarkers: Of increased interest is the detection of imaging biomarkers as 

indicators of malignancy, treatment response, and overall survival. Several have already been 
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mentioned in this chapter, including functional imaging techniques and response criteria. With the 

implementation of several screening programs, computer-aided diagnostic (CAD) algorithms are 

being developed to evaluate risk of malignancy in identified lesions and aid physicians with 

clinical decision making. These algorithms are aimed at reducing invasive follow up procedures 

in those with benign lesions and selection of optimal diagnostic/therapeutic approaches for those 

with malignant lesions. In general, interrogation of intensities corresponding to detected lesions 

through feature extraction is performed followed by feature reduction and classification to 

identify features of interest [47]. A significant number of algorithms have been developed for 

breast and lung cancer [48, 49].  

A limitation of the current tumor assessment criteria, including volume, is a lack of 

ability to detect variability in tissue types within a single tumor. Radiomics attempts to address 

this by extracting an extensive number of quantitative imaging features, similar to CAD, such as, 

shape, border, and texture features, and correlating them with non-imaging factors, like genetics 

and treatment strategies, as predictors of outcomes [50, 51]. Features are typically extracted from 

the entire tumor volume, isolated via segmentation; however, these principles may be applied on 

a cross-sectional basis or by stratification of intensities in order to obtain information about tumor 

heterogeneity [52].  

2.3 Animal models 

Ideally, advancements in cancer imaging, acquisition and processing, would involve in-

vivo disease processes; however, there are difficulties when studying human subject cohorts [53]. 

These include variability in cancer subtypes, disease stage, lack of control over clinical treatment 

approaches, complications due to co-morbidities, and limited access to end-point data such as 

mortality and complete bio-specimens for pathological confirmation. From a psychological stand-

point, recruiting patients is also difficult due to the need for extra non-diagnostic imaging, 

potentially increasing radiation exposure, and time commitment that adds additional burden to the 

patient. 

Small animal models have been developed to overcome several of these limitations and 

have been crucial in advancing understanding cancer biology and treatment development. These 

have included genetically modified mouse models in an attempt to replicate the genetic make-up 

of cancers. However, translation from mice to humans has limitations due to significant 

disparities in size, anatomy, physiology, metabolism, and genetics. Micro-imaging modalities, 
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based on the same principles of clinical modalities, have emerged to provide greater insight into 

these models. These developments have provided a greater comprehensive longitudinal 

understanding of small animal exposure studies [54]; however, translatability of protocols is 

limited due to differing capabilities between micro-modalities and clinical modalities [55]. In 

addition, large size disparities between small animal models and humans limit the ability for 

protocol development with clinical modalities. 

Cancers found in humans are complex, genetic diseases, something that is difficult to 

mimic with mouse models, leading to the exploration to more complex genetic animal models. 

Pigs have previously been used as biomedical models showing similar anatomy, 

pharmacokinetics, and size to humans [56-59]. Additionally, pigs have a more complex genetic 

background with technologies allowing for genetic manipulation in these animals [60]. These 

advantages present a promising background from which to develop cancer models that better 

reflect the human disease process providing a bridge between small animal models and human 

cohorts.  

Several groups have developed genetically modified pig models. One group has focused 

on the development of a colorectal cancer model showing progression to tumor, monitored with 

regular colonoscopies [61]. Several groups, including our own group, have focused on the 

generation of TP53 tumor suppressor mutant models with conditional activation [62] and 

germline mutations [63]. Conditional activation has also been explored for a KRAS oncogene 

mutant model [64] and a KRAS/TP53 mutant model [65]. Other models have been generated and 

are reported in Watson, et al. [60] and Flisikowska, et al. [66]. The development of these models 

provides the opportunity to advance disease detection, diagnosis, and treatment while 

simultaneously employing and validating standard and novel medical imaging techniques.  

2.4 Significance 

Porcine cancer models present the opportunity to overcome several issues in critical care 

for cancer patients by serving as controlled surrogates to refine imaging protocols. Their 

comparable size allows for use of clinical imaging modalities providing direct translational 

capabilities. Pigs have previously been utilized for the development and translation of 

quantitative CT imaging characterization of human emphysema [67-69]. At a fundamental level, 

medical imaging can be used for the genotype to phenotype characterization of new models. 
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During this process, systematic screening protocols may be established with focus placed on early 

detection of tumors.  

With growing access to medical imaging modalities, it is important to identify and justify 

the added benefit of specific imaging procedures. Pig models present the opportunity to conduct 

large cross-comparison studies with large datasets obtained from the same cohort of animals 

studied with multiple modalities and protocols. This provides tightly controlled studies for direct 

comparison and optimization of imaging protocols overcoming several limitations with human 

cohorts, including varied populations and patient concern. Examples of direct benefit include use 

of low dose CT, optimization of contrast enhanced protocol parameters for optimal scanning 

time, and verification of new PET radiotracers.  

Pigs also have a long lifespan (15-20 years) allowing for continued characterization of 

disease though longitudinal imaging with readily available access to diseased tissue upon 

necropsy for confirmation of disease using histopathology. The repeated use of animals for 

imaging allows for study design with small populations. This allows for a better understanding of 

both temporal and spatial extent of disease with direct correlation between imaging and 

histopathology; important for identification and verification of imaging biomarkers sensitive not 

only to malignant/benign characteristics across tumors, but also within tumor heterogeneity. 

Beyond protocol development, medical imaging is also used to monitor cancer 

progression over time. These models can be used where human models cannot, including 

unrestricted growth of cancer in the absence of treatment. Progression may also be monitored 

following systematic treatment strategies to identify and locate biomarkers of treatment response. 

In this instance, porcine models may act as an intermediary between basic science cancer research 

in mouse models and clinical trials. Lastly, imaging is essential in planning clinical interventions. 

The similar size and anatomy of pigs make these models ideal for testing new, advanced surgical 

techniques and approaches for stereotactic radiation treatment with confirmation of complete 

destruction and removal of all tumor cells.  
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CHAPTER 3:  LONGITUDINAL MEDICAL IMAGE ACQUISITION 

3.1 Introduction 

Medical imaging is a rapidly advancing field enabling the repeated, non-invasive 

assessment of physiologic structure and function. As a clinical imaging modality, CT has a fast 

acquisition time, moderate cost, and superior structural resolution while MRI involves no ionizing 

radiation and has excellent soft tissue contrast. These modalities provide the opportunity to non-

invasively characterize and compare progressive changes in pigs that can result from an 

intervention, exposure, or genetic manipulation. Longitudinal monitoring within the same animal 

can provide valuable information about the etiology of disease while also keeping the number of 

animals needed for a study to a minimum. 

Animal models have been relied upon in medical research to develop and validate 

technological and/or procedural methods for translation to humans. Specifically, pig models can 

serve as a valuable human surrogate in imaging studies due to their similar anatomy, physiology, 

life-span, and size to humans [58, 59]. This allows for testing and validation of novel imaging 

methods on clinical imaging systems with direct comparison between multiple modalities, a feat 

that is challenging to accomplish in humans. Qualitative and quantitative interpretation of 

medical images is dependent on compromises made between acquisition parameters (i.e. radiation 

dose or acquisition time) and resultant image quality. Image quality is affected by internal factors, 

including noise, artifact, and contrast resolution [70], and external factors, such as growth of the 

subject, and consistent, whole-body positioning [71]. These factors are important when seeking to 

detect and measure change in biological structure and/or function over time, as is used to track 

disease development and treatment response. In previous small animal studies, these varying 

external factors have been accounted for by the development of imaging protocols to acquire 

uniform images in the presence of respiratory motion [37] and use of external positioning units to 

ensure consistency in positioning using multiple imaging modalities [72]. 

This chapter describes the development and testing of methods for the acquisition of 

longitudinal medical images for disease monitoring in porcine disease models to determine the 

genotype to phenotype relationship. In this work, we present modification of clinically relevant 

medical image acquisition protocols adapted to accommodate longitudinal positioning of a 

sedated pig. A genetically modified Yucatan miniature pig model with Li-Fraumeni syndrome 
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was developed by Exemplar Genetics (Sioux Center, Iowa). Prone to the development of a wide 

variety of tumors, a cohort of animals was utilized for longitudinal, multi-modality protocol 

development. Further characterization of this model is described in CHAPTER 7: LI-

FRAUMENI.  

3.2 Materials and methods 

To facilitate longitudinal imaging of pigs, a variety of factors were taken into 

consideration during protocol development. Different model phenotypes present different ranges 

of potential impairments; therefore, it was important to ensure minimal stress was placed on the 

animal during each screening time point. In addition, minimal exposure to potential health 

hazards, such as airborne transmittable disease, was considered in the design process with 

placement of environmental controls. In choosing imaging modalities, access to facilities and 

transportation of the animal were important to consider as well as the strengths and limitations of 

each modality. Another consideration included consistent positioning of the animal during data 

acquisition, including between modalities and between imaging time points. This was important 

to support the application of image processing techniques reported in CHAPTER 5: MULTI-

LEVEL REGISTRATION and CHAPTER 6: LONGITUDINAL FEATURE EXTRACTION. 

Lastly, full recovery of the animal at the end of each screening required a minimally invasive 

procedure. In-house equipment was engineered and image protocols were chosen to develop 

repeatable methods that provided high quality diagnostic images while taking in account these 

limitations. 

Animal Preparation: All procedures were performed under anesthesia, induced with an 

intramuscular injection mixture of telazol (2.2 mg/kg), ketamine (1.1 mg/kg), and xylazine (1.1 

mg/kg) and maintained with 0.5 – 5% isoflurane. All animals were mechanically ventilated 

through tracheal intubation with an appropriate sized balloon cuffed endotracheal tube. 

Ventilation was performed with 5 cm H2O positive end expiratory pressure (PEEP) (ACCU-

PEEP Valve, Cascade Healthcare Solutions, Renton, WA, USA) and an approximate tidal volume 

of 10 mL/kg. The ventilation protocol used a respiratory rate of 10-16 breaths per minute to 

maintain an end-tidal carbon dioxide pressure (ET-CO2) between 35 and 45 mmHg and a blood 

oxygen saturation pressure (SpO2) of 98-100%. Peripheral intravenous (IV) access was obtained 

via ear vein cannula (20G) for the administration of contrast and was maintained using 

heparinized saline (3-5ml, 500 units/L) flushes.  
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Physiologic monitoring was maintained through the duration of each animal imaging 

study: in CT with a Phillips physiologic monitor (Intellivue MP90, Phillips Healthcare, Best, The 

Netherlands), in transit with a portable physiologic monitor (Propac Encore, Welch Allyn Inc., 

Skaneateles Falls, New York), and in MRI with a MRI compatible physiologic monitor (Invivo 

MAGNITUDE:3150M, Medeco, Boise, Idaho). All experimental procedures were approved by 

the Institutional Animal Care and Use Committees (IACUC) of the University of Iowa and 

Exemplar Genetics. 

 
Figure 3-1: Consistent positioning unit. The computer aided design drawing of the positioning unit, with 

corresponding dimensions, illustrating four quadrants with corresponding latches and an opening for the 

port at the front of the unit. 

 

Animal positioning: A positioning unit, designed by Samantha Dilger, illustrated in 

Figure 3-1, was designed to host the anesthetized animal during scanning and while in transit. 

With specific interest in CT and MRI, the completed unit was made from radiolucent and non-

ferromagnetic materials with highly restrained hydrogen atoms to prevent MRI artifact. A 

modular design was implemented to allow for flexibility of MRI coil placement, easy access to 

the animal, and accommodation for varying bore sizes. Quadrants were made of ½-inch thick 

polycarbonate, chosen for its long list of desirable qualities, and properly aligned with 

polycarbonate pegs. Each quadrant was lined with 1/16-inch thick butyl rubber gasket and 

fastened together with polypropylene draw-style latches secured with nylon 6/6 machine screws 

to provide an air tight seal for environmental isolation during transit. Misalignment in the 

partitioning of the head quadrants was purposefully designed for greater overall support and an 

air-tight seal. Lastly, quadrants could be removed during imaging to allow for appropriate 

placement of a variety of MRI coils. A rubber diaphragm was designed to fit into a chamfered 

port placed in the bottom head quadrant to house tubing for ventilation to the animal, intravenous 
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access, and a one-way value to prevent pressure build up in the unit. Movement of the unit was 

performed with a nylon sleeve with wooden handles placed below the unit.  

With interest in whole-body positioning, specifically organs of the head, thorax, and 

abdomen, animals were placed supine in the positioning unit for all imaging protocols and 

manually adjusted into alignment. The same positioning was maintained in MRI as the animal 

remained in the positioning unit during transit between modalities. Minimal differences included 

removal of the small base quadrant for placement of head coil in MRI and the front legs of the 

animal were extended out of the thoracic field of view in CT only. This allowed for optimal 

acquisition of CT datasets and accounted for the use of MRI surface coil placement on the 

abdomen and thorax. 

To increase efficiency, an MRI compatible cart (240-100 MRI stretcher, Biodex Medical 

Systems, Shirley, New York) was used as a central location to place and transport the positioning 

unit. A custom developed aluminum mounting system was attached to the cart to hold a portable 

MRI compatible anesthesia ventilator (Primer XP MRI-Compatible Veterinary Anesthesia 

Ventilator, DRE Veterinary, Louisville, Kentucky) equipped for isoflurane administration for 

uninterrupted administration of anesthesia. A removable aluminum (non-ferromagnetic) tray was 

machined to fit directly above the wheels to store materials for MRI contrast administration, an 

oxygen tank for use during transit, and backup supplies.  

Imaging protocols: Comprehensive, full-body screening protocols were developed to 

obtain optimal image phenotyping within an efficient research study time frame. CT was chosen 

for fast acquisition, high resolution, and quantitative imaging and MRI was selected for superior 

soft tissue contrast imaging without the use of ionizing radiation.  

Computed Tomography: Whole-body image acquisition was performed with a series of 

head, chest, and abdominal protocols to assess structural detail and comprehensive disease 

development throughout the body. CT scans were obtained with a dual-source scanner 

(SOMATOM Definition Flash or SOMATOM Definition Force, Siemens Healthcare, Forchheim, 

Germany). Parameters for all CT scans are listed in Table 3-1. Thoracic scans were acquired at an 

inspiratory breath-hold of 20 cmH2O PEEP (ACCU-PEEP Valve, Cascade Healthcare Solutions, 

Renton, WA, USA) following 2 minutes of pulmonary recruitment. Mouth pressure was 

monitored with in-house LabVIEW software (National Instruments, Austin, Texas) to confirm 

consistent inspiratory breath-holds during imaging. Cardiac gating was not used for any thoracic 

CT scans. Non-contrast and contrast-enhanced abdominal scans were also acquired at a 20 
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cmH2O PEEP breath hold to minimize motion artifact due to breathing. Contrast-enhanced 

abdominal scans were acquired to enhance structural detail and obtained 70 seconds following 

continuous administration of 2 mL/kg of iodinated contrast (Isovue Multipack 370mg/ml, Bracco 

Diagnostics, Monroe Township, New Jersey) through the peripheral IV access at a rate of 4 

mL/second. This protocol was modeled after the standard portal venous phase protocol for 

humans. Reconstruction of the head and body scans was performed with standard head and body 

reconstruction kernels, respectively, at 3 mm slice thickness for qualitative analysis and 0.75 mm 

slice thickness for quantitative CT analysis.  

Table 3-1: CT Imaging Protocols. Parameters for CT imaging developed for a SOMATOM Definition 

Flash/Force dual-source scanner. Three main protocols were developed for the head, non-contrast chest, 

abdomen, and pelvis, and contrast-enhanced abdomen. 

 Head 
Non-contrast Chest/Abdomen/ 

Pelvis 

Contrast Abdomen 

 

Scanner FLASH FLASH FORCE FLASH FORCE 

Scan Type 
Helical 

(SE) 
Helical (SE) Helical (SE) 

Helical 

(SE) 
Helical (SE) 

Rotation time 

(s) 
1.0 0.5 0.5 0.5 0.5 

Det. 

Configuration 
128 x 0.6 128 x 0.6 192 x 0.6 128 x 0.6 192 x 0.6 

Eff. mAs 390 210 190 210 110 

kV 120 120 120 120 120 

Care Dose 4D OFF OFF OFF OFF OFF 

Pitch 0.55 1.0 1.0 0.6 1.0 

Recon. 

Algorithm 
H31 B35 Br40 B35 Bf40 

Slice 

Thickness 

(mm) 

3, 0.75 3, 0.75 3, 0.75 3, 0.75 3, 0.75 

Scan time < 10s < 25s < 5s < 10s < 5s 

Breath hold None 20 cm H2O 20 cm H2O 20 cm H2O 20 cm H2O 

 

Magnetic Resonance Imaging: Comparable, whole-body imaging with MRI was 

performed using a series of scans of the head, chest, and abdomen. All MRI scans were acquired 

with a 3-Tesla MRI system (MAGNETOM TIM Trio 3T, Siemens Healthcare, Forchheim, 

Germany) with standard head and surface coils. Parameters for all MRI scans are listed in Table 

3-2. A high-resolution brain scan to assess structural detail was performed using a T2 3D turbo 

spin echo with variable flip angle (SPACE) protocol. Subsequently, a diffusion tensor imaging 

(DTI) protocol was acquired to permit detailed analysis of the white matter. For the chest and 

abdomen, standard turbo spin echo T2-weighted scans acquired in the axial and coronal planes 

were used to assess areas of increased fluid content, such as metastatic tumors or areas of 
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inflammation. Respiratory navigation was performed to limit motion artifact during ventilation. A 

T1-weighted volume interpolated gradient echo (VIBE) contrast-enhanced abdominal sequence 

was acquired pre-contrast and 30, 60, and 180 seconds post IV administration of 0.2 mL/kg 

gadolinium MRI contrast agent. These scans were collected to incorporate functional analysis of 

blood flow through the liver and obtain greater anatomical detail in the abdomen. An additional 

post-contrast VIBE thoracic scan was acquired for increased anatomical detail in the lungs. 

Breath-holds of 25 seconds or less at an inspiratory pressure of 20 cm H2O (ACCU-PEEP Valve, 

Cascade Healthcare Solutions, Renton, WA, USA) were used to reduce motion artifact for all 

VIBE scans. This MRI assessment was optimized after considering several pulse sequences 

including fluid attenuated inversion recovery (FLAIR), short tau inversion recovery (STIR), 

ultrafast 3D gradient echo (MP-RAGE), single-shot turbo spin echo (HASTE), and diffusion 

weighted imaging. Cardiac gating was not performed during any of the thoracic MRI scans. 

Table 3-2: MRI protocols. Parameters for MRI imaging developed for a 3-Tesla TIM Trio scanner. Six 

main protocols were developed for focus on the brain, chest, and abdomen. Two sets, chest and abdomen, 

of T2 axial and coronal were acquired and a dynamic VIBE sequence acquired in the abdomen pre-

contrast and 30, 60, and 180 seconds post-contrast resulting in a total of 11 scans. 

 Head Chest Chest/Abdomen Abdomen 

  

3D SPACE Axial DTI 

Post-

Contrast 

VIBE 

T2  

(Axial) 

T2 

(Coronal) 

Dynamic 

VIBE 

Scanning 

sequence 
Spin echo Echo planar 

Gradient 

echo 
Spin echo Spin echo 

Gradient 

echo 

Acquisition 

type 
3D 2D 3D 3D 3D 3D 

Repetition 

time (msec) 
1630 2800 4.3 5285 5279 4.3 

Echo time 

(msec) 
119 83 1.92 156 157 1.92 

Flip angle (o) 120 90 12 120 120 12 

Echo train 

length 
141 1 1 109 109 1 

Slice 

thickness 

(mm) 

0.9 5 3 5 5 3 

In-plane 

resolution 

(mm) 

0.9 x 1.1 1.5 x 1.5 1.0 x 1.8 1.4 x 1.8 1.5 x 2.0 1.0 x 1.8 

Acquisition 

matrix 
256 x 194 160x160 256 x 192 256 x 194 256 x 194 256 x 192 

Number of 

Slices 
96 12 72 48 40 72-80 

Approx. Scan 

time 

(min:sec) 

7:50 1:50 0:24 4:52 4:10 0:23 

Respiratory 

management 
None None 

Breath hold 

20 cm H2O 

Navigator 

gating 

Navigator 

gating 

Breath hold 

20 cm H2O 
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 Consistent positioning evaluation: Due to the desire to maintain consistent positioning, 

alignment of the skeleton and major internal organs in acquired images were evaluated using 

segmentation and rigid image registration. CT images from each imaging time point were 

registered with CT images obtained from the first time point for each animal to assess across time 

point alignment. MRI images were registered to CT images acquired in the same time point to 

assess within time point alignment. Registration was performed with a rigid and anisotropic 

scaling transform accommodating for simple translational and rotational alignment and growth of 

the animal, respectively. Initialization of the transform was performed by aligning the image 

centers of geometry and the mutual information metric formulized by Mattes, et al. was used to 

account for the use of multiple imaging modalities [73]. Additional metric initialization in all 

three axes was included for assessing positioning within time points between CT and MRI due to 

the disparities in anatomic fields of view. A comprehensive description of the registration 

framework and initialization methods is described in CHAPTER 5: MULTI-LEVEL 

REGISTRATION. 

Positioning across time points was evaluated in CT images through quantitative measures 

using skeletal models generated through the methods shown in Figure 3-2. The skeleton of each 

animal was initially isolated in each non-contrast CT image with thresholding at voxel values 

above 200 HU. Morphological dilation was performed with a binary ball structuring element of 

radius one and connected areas of less than twenty thousand voxels were removed from the 

skeletal mask. A final mask was created with morphological erosion and manual inspection to 

remove non-skeletal areas that remained. Models of the skeleton were created using the model 

maker module in Slicer 3D [74, 75]. Visual alignment post-registration of skeletal models was 

observed and quantitative assessment was performed with eleven fiducial locations, obtained via 

single observer from each model corresponding to the sternum, scapulae, ribs, vertebrae, pelvis 

and legs. Three fiducials were acquired from a single observer at each of the eleven locations and 

averaged resulting in one fiducial per location. Locations were chosen to represent peripheral and 

central alignment, minimize segmentation error, and accommodate all fields of view. 

Misalignment was quantified by calculating the distances between corresponding fiducials from 

the first time point and all corresponding time points. 

Positioning across modalities within each time point was performed through registration 

of CT and MRI acquisitions obtained with equivalent breath holds. Visual assessment was 

performed using checkerboard images to evaluate alignment of major internal organs. Lastly, 

preliminary quantification of skeletal growth was obtained via measurements of bone length of 
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the left femur and the sternum. Two measurements were made per bone with the digital calipers 

in 3D Slicer on the 3D skeletal models by a single observer and averaged for a final 

measurement. Change in growth was determined with difference measures between the first time 

point and all other time points. Similar measurements were obtained on the weight of the animal 

at each time point and compared to determine the relationship between skeletal growth and 

weight change. 

 
Figure 3-2: Creation of skeleton models. The methodology used to create skeletal models with examples of 

various steps displayed as an illustration of how the process is performed. The skeletal model used for 

fiducial placement was the result from the final step and is shown in the lower right corner of the figure. 

 

Table 3-3: Longitudinal time points. The time points acquired for longitudinal imaging acquisition. Purple 

indicates that CT and MRI protocols were acquired, while blue indicates only CT protocols were acquired. 

Four wild type (WT) animals (A-D) were used for protocol development (PD). Subjects F-K were born at 

the end of September 2011 such that screening began at 12 months of age.  

 2012 2013 2014 2015 2016 

Subject A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J-D J F M A 

WT A-D PD                                    

F       X  X  X  X   X      X             X    

G       X  X  X  X   X      X                 

H       X  X  X  X   X      X             X    

I       X  X  X  X   X      X         X        

J       X  X  X  X         X                 

K         X  X  X         X                 
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3.3 Results 

The designed, image-based monitoring procedure was applied to Yucatan miniature pigs 

between ages 10-52 months (30-85kg). Four wild type pigs were utilized to optimize and finalize 

CT and MRI protocols with respect to image quality and screening time. Six Li-Fraumeni animals 

were imaged repeatedly to longitudinally screen for tumor development using the finalized 

acquisition protocol. Of the initial six animals, one was replaced after the first time point due to 

an incidental medical condition. Imaging studies began at 12 months of age and occurred 

thereafter at 14, 16, 18, 21, 27, 36 and/or 51 months of age. CT was acquired at every imaging 

time points with MRI acquired at select time points as summarized in Table 3-3. 

 
Figure 3-3: Time analysis of longitudinal studies. Graphical analysis of the time required the first four 

screening time points by age and overall average with a breakdown regarding animal preparation, 

recovery, and imaging time. 

 

Time analysis was performed for the first four time points. The amount of time required 

for animal preparation, CT and MRI acquisition, and animal recovery was reported. CT imaging 

stayed relatively consistent with an average time of 30 ± 10 minutes with the most time required 

for animal alignment, breath-holds, and contrast injection. MRI required 82 ± 16 minutes to 

acquire all the protocols for full body acquisition with an imaging time of less than one hour and 

additional time required for equipment setup, positioning, and coil placement. Overall, the 

required time for each screening time point was an average of 201 ± 44 minutes with most of the 

variability seen in animal preparation and recovery. Increased efficiency can be seen through the 

four time points with an optimized average time of 165 minutes for time point 4 (18 months) as 

demonstrated in Figure 3-3.  
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Each imaging time point resulted in the 3 CT scans and 11 MRI scans per animal 

demonstrated in Figure 3-4, Figure 3-5, and Figure 3-6. Consistent inspiratory breath holds were 

achieved with an average of 20.19 (± 1.54) cm H2O PEEP for all thoracic and abdominal CT 

scans with the same PEEP value utilized in MRI. Consistent positioning assessment was focused 

on non-contrast, chest-abdomen-pelvis CT scans and breath-held chest and thoracic VIBE scans. 

CT scans were registered to the first acquired CT scan to evaluate positioning across time point. 

The final transforms showed minimal rotation (1.47 ± 1.28o), minimal translation (7.38 ± 17.18 

mm) in all anatomical planes with the largest observed in the sagittal plane, and minimal scaling 

(1.03 ± 0.06) in all anatomical planes with the largest also observed in the sagittal plane. All 

skeletal models were successfully generated and aligned. Visual inspection showed the largest 

variations at the limbs, upper vertebral column, and upper sternum. Fiducials were obtained and 

differences were calculated between the first time point and all other time points. Quantitatively 

by fiducial location, illustrated in Figure 3-7, the largest skeletal deviations occurred at left knee 

with an average misalignment of 24.03 (± 10.21) mm followed by the right knee at 19.31 (± 

11.59) mm. The smallest deviations were seen at the pubic symphysis joint with an average 

misalignment of 12.68 (± 10.01) mm followed by the middle vertebrae at 13.89 (± 7.61) mm. 

Table 3-4: Consistent positioning by time point. The misalignment across time points calculated from all 

eleven fiducial locations showing the increased average error as the age of the animal increases. 

Age at time 

point 

[months] 

Age from first 

time point 

[months] 

Average 

[mm] 

Standard 

deviation 

[mm] 

Minimum 

[mm] 

Maximum 

[mm] 

12 0 0.00 0.00 0.00 0.00 

14 2 11.12 5.24 3.24 28.95 

16 4 12.58 7.13 2.78 38.29 

18 6 15.14 9.29 1.58 52.04 

21 9 16.91 7.32 4.21 38.87 

27 15 23.39 14.20 6.50 60.34 

36 24 13.99 7.68 3.26 24.03 

51 39 35.13 27.05 6.95 93.61 

 

Observations across time points showed that misalignment increased as the difference in 

age of the animal increased. Error increased in a linear trend with average errors of 11.12 (± 5.24) 

mm seen at 2 months from the first time point (14 months of age) to average errors of 35.13 (± 

27.05) mm seen at 39 months from the first time point (51 months of age). In comparison, 

maximum errors ranged from 28.95 mm to 93.61 mm at 2 months and 39 months from the first 

time point, respectively, as seen in Table 3-4. Overall, an average misalignment of 16.51 (± 
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12.46) mm occurred between all acquired measurements from all subjects at all measured 

locations. 

VIBE pre-contrast abdominal and post-contrast chest MRI scans were registered to 

corresponding CT to assess within time point positioning. Visual evaluation of results focused on 

the internal alignment of organs and showed the presence of rotational changes about the sagittal 

plane, specifically in the alignment of the lungs. This is reflected in the resulting transforms with 

an average rotation of 1.94 (± 2.16)o required for the chest scans versus an average rotation of 

1.63 (± 1.45)o required for the abdominal scans. Following initialization, minimal translation and 

scaling was required with an overall average translation of 1.8 (± 5.13) mm and average scaling 

of 1.00 (± 0.02). Demonstration of internal alignment is seen in Figure 3-8. 

Final assessment of bone growth in the sternum versus the left long bone showed variable 

growth trends over time, irrespective of weight gain or loss. Animals weighed on average 45.20 

(± 10.66) kg at the first time point with a final weight of 63.17 ± 25.02 kg seen at their 

corresponding final time point, shown in Figure 3-9A. Average weight gain between the first time 

point and all other time points was 8.32 (± 13.24) kg with a range of -11 kg to 44 kg. The sternum 

showed more aggressive growth rate across all time points compared to the femur which appeared 

to stabilize in growth around 27 months as observed in Figure 3-9B. Comparing measurements 

acquired from time point at 27 months, the sternum grew on average 16.84 (± 5.71) mm versus a 

growth of 13.63 (± 2.15) mm in the femur. 
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Figure 3-4: Acquired CT scans. Head scan in the (A) soft tissue (W:100, L:50) and (B) bone (W: 1000, L: 

400) windows. The lungs focused on in the non-contrast chest, abdomen, and pelvis scan shown in a lung 

window (W: 1400, L: -500) in the (C) coronal and (D) axial anatomic planes. Abdominal anatomy from the 

(E) non-contrast chest, abdomen, and pelvis scan and the (F) contrast enhanced scan acquired 70 seconds 

post-injection shown in an abdominal window (W: 350, L: 40). 
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Figure 3-5: Acquired MRI scans. (A) 3D Axial SPACE scan of the brain. (B) Post-contrast VIBE scan of 

the thorax. (C) T2 axial and (D) coronal thoracic scans. (D) T2 axial and (F) coronal scans of the 

abdomen.  
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Figure 3-6: Acquired MRI scans. Contrast-enhanced VIBE sequence in the abdomen starting with the pre-

contrast image, 30, 60, and 180 seconds post-contrast. 
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Figure 3-7: Consistent positioning by fiducial location. The aligned skeletal models at 12, 18, and 27 months of age (darkest to lightest) displaying visual and 

quantitative assessment of alignment. All measurements are reported as the average error between each time point and the first time point post-registration. 
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Figure 3-8: Consistent positioning within time points. Checkerboard images of aligned MRI and CT images 

demonstrating the internal alignment of internal structures. Images alternate beginning with MRI in the 

upper left corner. 
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Figure 3-9: Skeletal growth and weight change. (A) Average change in weight across time points compared 

to the variable growth in the skeleton as demonstrated by the (B) sternum versus the left femur. All 

measurements are demonstrated as change from the first time point as illustrated by zero change at 12 

months of age. Initial weight was 45.20 (± 10.66) kg, initial sternum length was 173.91 (± 11.43) cm, and 

initial femur length was 174.12 (± 7.98) cm.   
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3.4 Discussion 

This chapter describes optimized CT and MRI acquisition methods for non-invasive 

characterization of disease development in porcine disease models. CT was selected for its fast 

acquisition of high resolution volumetric data, broad applicability, and wide availability in the 

clinical imaging field. MRI provided a strong complement with the lack of ionizing radiation 

making it ideal for longitudinal acquisition. Through the acquisition of 7 time points spanning 

over 3 years, we demonstrated the ability to use pig models for controlled longitudinal studies 

that is not easily accomplished with humans and with direct translatability not found with small 

animals. In addition, this work provides a platform methodology on which variations in targeted 

organ imaging may be developed as needed with potential extension to additional imaging 

modalities, such as positron emission tomography (PET). Further application of these imaging 

methods to several animal models is seen in CHAPTER 7 – CHAPTER 10.  

Due to their comparable size, the use of large animals has been previously reported for 

the development and translation of CT protocols to aid in the quantitative CT characterization of 

human emphysema [67-69]. Furthermore, pig models have similar metabolic activity and lifespan 

providing a more robust surrogate for targeted therapies developed in large animal models for 

subsequent translation to humans [76, 77]. Our data acquisition was facilitated by the availability 

of dedicated research CT and MRI scanners and corresponding technologists at the University of 

Iowa. The imaging protocols for this study were chosen to parallel clinical protocols with an 

emphasis on obtaining the optimal achievable image phenotyping within an efficient research 

study time frame. In CT, minimization of radiation dose was not prioritized over high resolution, 

low noise images in the interest of obtaining high quality images throughout the whole-body. 

Studies evaluating recent CT technology aimed at lowering dose, including iterative 

reconstruction and dose modulation, have shown comparable qualitative and quantitative imaging 

data [3-5, 7, 78-80]. The use of such low dose protocols for whole-body screening in conjunction 

with targeted protocol development are demonstrated in CHAPTER 10: CONDITIONALLY 

ACTIVATED KRAS MODEL. In comparison, our MRI protocols required a balance between 

time and quality to achieve whole-body assessment within the target image acquisition period of 

one hour. Additionally, our MRI protocols were optimized within the limitations of available 

MRI scanner (3T vs. 1.5T), coils, and software. Specific focus on targeted acquisitions in lieu of 

whole-body screening could lead to shorter scan times with increased anatomic or functional 

detail, as demonstrated in CHAPTER 9: RADIATION EXPOSURE MODEL.  
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Incorporating medical imaging surveillance has proven to be a useful tool for 

pathological analysis of pig models. Imaging modalities can screen large volumes of tissue more 

effectively and efficiently than can be done at a typical necropsy. In these instances, detection of 

tumors via non-invasive medical imaging aids in the timing of necropsy and guidance of tissue 

collection for histopathological examination as demonstrated in CHAPTER 7: LI-FRAUMENI 

and CHAPTER 9: RADIATION EXPOSURE MODEL. Volume rendering is particularly 

advantageous, specifically using CT due to the acquisition of isotropic voxels providing finer 

detail. Once regions of interest are identified they can be spatially targeted by their distance as 

precisely as 1 mm from selected anatomic landmarks, similar to the way imaging can guide 

surgeons during an operation [81]. Thus, imaging modalities complement and improve 

pathological examination and assessment of pig models.  

In addition to imaging methods, we have also described a method for consistently 

positioning pigs for longitudinal monitoring with assessment across time points and within time 

points facilitated by the design of a custom positioning unit. Similar longitudinal image 

positioning techniques have been employed for human cohorts specifically for the alignment of 

PET and MRI images of the breast focusing on imaging just the region of interest [82]. Our 

methods showed positioning across time points to be consistent within 17 mm on average 

following the acquisition of a rotational, translational, and anisotropic scaling transform to align 

acquired datasets; within time point positioning was visually confirmed and showed minimal 

change in positioning between modalities outside of the chest. Observed rotations in the chest 

may be explained by the differences in positioning of the front legs between MRI and CT where 

they were extended outside of the thoracic field of view. This qualitative and quantitative 

assessment showed the ability to control consistent positioning; however, additional external 

factors remained outside of our control, such as animal growth over time.  

Yucatan miniature pigs have the potential for continuation of growth throughout their 

lifespan beginning at 0.5 kg at birth to 12-45 kg within 4 months and 45-100 kg within 1 year [56, 

83]. Our time points began at one year of age to minimize the rate of growth change and allow for 

potential disease development to occur over 3.5 years of monitoring. While the majority of the 

rapid growth phase of the juvenile period (<16 months) [84] was excluded in this study, we still 

found continued skeletal growth that is variable across bones and is not consistently correlated to 

weight change. This continued growth is likely the cause of the increased error in skeletal 

alignment seen over time. This may also be of particular importance in conjunction with 

symptoms of disease, such as anorexia, that can influence weight gain/loss between imaging time 
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points suggesting an inherent error that cannot be completely accounted for by consistent 

positioning. While we still achieved average errors of less than 17 mm, the achieved errors were 

larger than desired for targeted region of interest analysis. Rather, this level of error indicates 

what was achievable with implementation of a consistent positioning schema supporting the need 

for a more sophisticated, post-acquisition registration approach as presented in CHAPTER 5: 

MULTI-LEVEL REGISTRATION. 

Lastly, we chose the first acquired time point as the reference dataset to allow more time 

points to occur without requiring analysis to be repeated. To potentially minimize this trend, a 

different reference dataset may be used to reduce the temporal misalignment between the 

reference and all other datasets and lessen the degree of growth that may have occurred between 

time points. In some instances, it may also be desirable to begin screening before one year of age 

where more rapid development may occur. This, in conjunction with targeted acquisition 

protocols, may require additional considerations during positioning of the animal and data 

analysis.  

In conclusion, the ability to longitudinally characterize porcine disease models with 

medical imaging presents an opportunity to develop novel validated CT and MRI protocols for 

direct translation to the diagnosis and treatment of human disease. We have demonstrated 

optimized CT and MRI imaging including the acquisition of tightly controlled protocols and the 

maintenance of consistent positioning with an average skeletal misalignment of less than 17 mm. 

These developed methods open the door for sustainable tracking and assessment of disease 

progression and lay a foundation for the development of qualitative and quantitative methods for 

comparison. 
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CHAPTER 4:  STRUCTURED REPORTING 

4.1 Introduction 

In the field of radiology, structured reports have been developed as a method of 

standardizing radiology report information to guide measures, standardization, and improvement 

of delivering health care. These reports are generated to contain patient demographics, 

information about the imaging procedure, including date, time, and technical factors, and standard 

language that radiologists use to provide imaging observations and summarize findings [85]. 

Such reporting methods have been implemented in breast imaging and successfully evolved since 

the 1980s [86-89] with expanded growth to include a wide range of imaging uses. Increased 

adoption rates across radiology departments – typically in conjunction with an automated voice 

recognition system – have been shown to lead to less textual errors [90], better communication 

practices between radiologists and referring clinicians [91, 92], and improved clarity and content 

[93, 94]; however, limitations exist in efficient use and training in standard language [95].  

The use of standard language leads to a natural interface with electronic health records 

for data mining purposes and an evidence based support system for determining and justifying 

optimal imaging methods for characterizing disease [85]. Different qualitative scales denoting the 

presence/absence or severity of a diagnosis have been reported for comparative studies [96, 97]; 

however, implementation of structured reports provides an inherent documentation for such 

analysis. For example, the Breast Imaging Reporting and Data System (BI-RADS) diagnostic 

categories [89] have previously been used for comparison of traditional mammography, breast 

ultrasound, and MRI for monitoring breast cancer in high risk patients [98]. In addition, these 

methods are important for the refinement of protocols for human applications, including 

detection, diagnosis, and monitoring of disease, and validation of novel imaging methods.  

In this chapter, we present the use of developed structured reports for longitudinal, 

qualitative interpretation of the data acquired in CHAPTER 3: LONGITUDINAL MEDICAL 

IMAGE ACQUISITION. We also extend their use to present a systematic, semi-qualitative 

comparison of imaging protocols from both CT and MRI for lung assessment to determine the 

diagnostic strengths/weaknesses of the included MRI protocols versus the CT protocols . These 

results have previously been published by Hammond, et al. [99]. 

   



31 
 

4.2 Materials and methods 

Structured reports were developed, modeled after the Radiologic Society of North 

America (RSNA) radiology reporting initiative [100], to provide consistent, retrievable, and 

complete qualitative interpretation for each scan of an acquired time point. Each structured report 

led the assessment of the diagnostic quality of the scan, targeted anatomies, and peripheral 

structures with specific focus placed on whole-body screening for tumor progression. For 

identified tumors, the RECIST diameter [33, 34], including the dataset slice number 

corresponding to the measurement, was noted. Anatomic location, boundary appearance, and 

imaging characteristics were also reported. A comprehensive list of anatomies and other 

indicators of disease prompted for evaluation is listed in Table 4-1.  

Table 4-1: Structured reporting anatomies. A comprehensive list of anatomies and indicators of disease 

assessed with the structured reports. Bold indicates a major organ of interest with indicators in italics and 

additional structures in plain text. 

Head Abdomen 

Brain Musculoskeletal Liver  

    Nodules Sinus     Nodules Kidneys, Adrenals 
    Calcifications Lymph nodes 

 

    Calcifications 

    Size 

    Nodules 

    Size 

Chest     Iron         Fat 

Lungs      Fat     Texture 

   Right: cranial, middle, caudal     Texture Bile ducts 

   Left: cranial, caudal  Spleen Gallbladder 

   Accessory Large airways     Nodules Peritoneal fluid 

    Nodules Esophagus     Size Lymph nodes 

    Consolidation Pleura     Texture Peritoneum 

    Emphysema Cardiovascular GI Tract Cardiovascular 

    Cysts Lymph nodes     Nodules Retroperitoneum 

    Bronchiectasis Chest wall     Lumen size Abdominal wall 

    Atelectasis Lower neck     Wall thickness Bladder 

    Bronchial wall thickening Musculoskeletal Pancreas Musculoskeletal 

    Reticular abnormalities     Nodules     Nodules     Nodules 

    Ground-glass opacities Mammary     Size Mammary 

    Honeycombing     Nodules     Fat     Nodules 

    Linear opacities      Texture  

 

Structured reports were defined for each modality, subject, and screening time point and 

used by a radiologist for systematic reporting of findings. Diagnostic quality of each scan was 

tabulated and reported followed by full-body, structural assessment, incorporating both CT and 

MRI, in all animals for complete tumor phenotype characterization.  

A comparative analysis study was performed with datasets acquired from the first four 

time points (12, 14, 16, 18 months of age) of the longitudinal image acquisition study described 
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in CHAPTER 3: LONGITUDINAL MEDICAL IMAGE ACQUISITION. Focus was placed on a 

subset of lung disease indicators to compare the relative merits of CT and MRI in characterizing 

lung disease. To minimize reader bias, scans were randomized by subject and time point within 

each modality resulting in pseudo time points. Developed structured reports were matched with 

the corresponding set and were read by a radiologist in one week intervals. The true subject and 

time point remained blinded to the radiologist at the time of reading.  

The reported lung disease findings were divided into upper (right and left cranial, right 

middle) lung and lower (right and left caudal, accessory) lung. The T2 thoracic images and the T1 

VIBE thoracic images were read in combination for the MRI structured reporting results. The 

gathered data was used to assess the percent agreement between the two imaging modalities with 

CT considered the gold standard for lung imaging. Percent agreement was calculated as the 

number of congruent findings, where both CT and MRI showed the same presence/absence of a 

condition, divided by the total number of time points. Results were also tabulated by modality 

and disease indicator to identify overestimation and underestimation of indicators by MRI 

compared to CT.   

4.3 Results 

A total of 14 unique structured reports were created corresponding to the acquired scans 

(3 CT scans, 11 MRI scans) and used for assessment of all acquired imaging datasets by a single 

radiologist (6 animals, 4 time points). Ninety-eight percent (71/72) of CT scans were of excellent 

diagnostic quality with a single non-contrast chest-abdomen-pelvis scan showing respiratory 

motion. In comparison, 100% of T2 MRI scans showed excellent diagnostic quality. Significant 

distortion was seen in all DTI scans of the brain demonstrating limited diagnostic capabilities. 

Twenty-nine percent (7/24) post-contrast chest VIBE scans showed aliasing artifacts, yet 

diagnostic ability was still maintained. Lastly, minor artifact was observed in a single (1/24) 

SPACE brain scan and a single set (1/24) of the dynamic VIBE abdominal sequence.  

No significant tumor related findings were seen in the cohort of Li-Fraumeni animals 

imaged in CHAPTER 3: LONGITUDINAL MEDICAL IMAGE ACQUISITION providing a 

baseline measure of animals. Several small, calcified granulomas were noted across all animals in 

CT in the neck corresponding to the pre-anesthetic injection site. A 2.3 cm mass was detected in 

the right paracardial mediastinum in all chest MRI scans for subject I at 18 months of age 

displaying as hyper intense in T2 scans and isointense in T1 VIBE scans compared to soft tissue 
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with a defined border. Inspection in the corresponding CT scan showed a dense collection of 

blood vessels with no presence detected at subsequent imaging time points in both CT and MRI. 

Other findings include a chronically enlarged heart seen in subject J and caked small bowels 

among all animals. Lymph nodes were consistently measured for comparison showing a range of 

measures from 8 mm to 20 mm throughout the lymphatic system.  

Table 4-2: Percent agreement between CT and MRI. Additional conditions included nodules, emphysema, 

cysts, reticular abnormalities and honeycombing, but were minimally identified. Percent agreement was 

calculated as the number of congruent findings (presence and absence of condition) divided by the total 

number of analyzed time points. 

Lobe 
Right 

cranial 

Right 

middle 

Right 

lower 
Accessory 

Left 

Cranial 

Left 

Lower 
Total 

Consolidation 78% 87% 83% 100% 100% 48% 83% 

Bronchiectasis 74% 83% 48% 96% 96% 52% 75% 

Atelectasis 74% 78% 91% 96% 70% 78% 81% 

Bronchial wall 

thickening 
91% 100% 70% 100% 96% 83% 90% 

Ground glass 

opacities 
30% 96% 39% 100% 35% 30% 55% 

Linear opacities 52% 52% 17% 96% 52% 17% 48% 

Total 67% 83% 58% 98% 75% 51% 72% 

 

The comparative analysis between CT and MR focused on findings in the chest, using CT 

as the gold standard. An overall 72% agreement was observed among all conditions in all lobes of 

the lung as seen in Table 4-2. MRI (including management of respiratory motion) was shown to 

be useful in the detection of consolidation, atelectasis, and bronchiectasis, and bronchial wall 

thickening with an agreement above 75% with CT in those categories. Linear opacities (48%) 

showed poor congruency, specifically in the lower lobes (17%), with CT. Upon further 

tabulation, it was seen that linear opacities were underestimated as seen in Figure 4-1. At only 

55% agreement, MRI systematically over estimated ground glass opacities in the lungs, as 

indicated in Figure 4-1, particularly in the cranial and caudal lung lobes. Lobar location in the 

lungs showed higher agreement (67%, 75%) in the cranial lobes than the lower lobes (58%, 51%) 

with the right middle (83%) and accessory (98%) lobe showing the greatest agreement; however, 

minimal findings occurred in the right middle and accessory lobes with both modalities.  



34 
 

 
Figure 4-1: Frequency and congruency of noted conditions. Visual demonstration of the occurrence of 

disease indicators in the lungs separated by upper and lower lung and by subject. Time point is noted by 

quadrant per the key in the upper left corner. Black indicates the presence of a condition, white is absence 

of a condition, and gray denotes that that imaging did not occur at that time point. 
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4.4 Discussion 

A structured reporting framework was developed to aid in systematic, longitudinal 

characterization of pig models where developed reports successfully led the evaluation of all 

images. A majority of scans demonstrated diagnostic capabilities even given minor artifacts; 

however, DTI scans showed significant distortions due to the large cavernous sinuses in the skull 

creating multiple bone/air interfaces [101]. No significant tumor related findings were seen in this 

cohort; however, baseline understanding of animals was inferred. 

In addition, we performed a comparative analysis study to determine the relative merits 

of CT and MRI in the detection of lung disease characteristics. Predictably, CT was superior over 

MRI in the detection of fine structural details, such as linear opacities. Comparatively, MRI was 

shown to be reliable in the detection of bronchiectasis, atelectasis, and bronchial wall thickening. 

However, the results indicated a large disagreement in the incidence of ground glass detected in 

MRI compared to CT. It was inferred that this was the result of artifacts due to cardiac motion 

and contrast enhancement observed in the T1 post-contrast VIBE scans. To reduce reader bias, 

data was presented to the radiologist observer in a randomized, blinded fashion with assessments 

focused on detection (presence/absence) of conditions that have been well defined in the literature 

[102]. However, a limitation of this sub-study was that intra-observer and inter-observer 

assessments were not included. 

It is important to note that pathology ground truth was not acquired for any conditions 

and real transient findings may have occurred given that MRI scans were acquired post CT 

acquisition. In addition, longer ventilation time may have increased the presences of atelectasis 

and additional secretions, specifically in the lower lobes despite lung recruitment maneuvers. 

Improved detection of lung conditions in MRI may be achieved with the use of cardiac gating and 

increased frequency of pulmonary recruitment. Due to these factors, routine imaging with CT is 

preferred for detection of early structural assessment with adequate capture of later stage disease 

development using MRI. Future application of ultra-short echo time (UTE) sequences could 

further enhance lung structure assessment of MRI [103, 104]. We can now use the developed 

structured reporting method and comparative analysis to assess performance of these methods.  

The use of animal models presents an advantage in comparative studies. Systematic 

acquisition of multimodal images across multiple protocols using such models is possible without 

the risks and complications associated with human cohorts, such as radiation exposure. In our 

study, we acquired diagnostic quality images across several time points with multiple modalities. 
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In addition, the use of structured reports provided a standardized language across longitudinal 

time points and imaging modalities. We chose to focus our comparative analysis on lung 

indicators of disease, given that minimal findings were indicated by the radiologist in the head 

and/or abdomen; however, extension of these principles may be applied across the whole-body. 

With respect to cancer, multimodal, whole-body imaging comparative studies have previously 

been reported specifically related to tumor staging and metastatic disease between PET/CT and 

proton MRI [105], diffusion weighted imaging MRI [106], and PET/MRI [23], with PET/CT as 

the current clinical standard.  

As previously mentioned in CHAPTER 3: LONGITUDINAL MEDICAL IMAGE 

ACQUISITION, CT requires the use of potentially harmful ionizing radiation with specific CT 

technological implementations aimed at reducing the amount of dose required for an examination. 

Additional strategies have included the substitution of MRI for CT where appropriate due to its 

lack of ionizing radiation [107], specifically in radiation sensitive patients, such as pregnant 

women and children. MRI has been explored as an acceptable alternative to CT imaging in cystic 

fibrosis patients [108-110]. Similar to our results, these studies suggest that MRI may be used as a 

reasonable alternative in the event of short-term follow-up. It is important to note that cystic 

fibrosis and tumor development are diseases that increase the amount of tissue present and, 

subsequently, MRI signal. In assessment of disease that results in loss of tissue, such as 

emphysema and chronic obstructive pulmonary disease, imaging with low dose CT may remain 

more prudent.  
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CHAPTER 5:  MULTI-LEVEL REGISTRATION 

5.1 Introduction 

Systematic acquisition of medical images provides a substantial database for the testing 

and development of image processing tools for characterization of porcine disease models with 

direct translational application to clinical disease management. Registration is an image 

processing technique that aligns similar anatomical structures across different images. This is 

beneficial for understanding disease progression through the identification of the same region 

over time to evaluate relative change. Longitudinal imaging has frequently been performed with 

MRI, specifically on the brain. Image registration has been used in this context to study the 

cortical reduction in the development of psychosis by comparing regional changes over time 

[111]. Applications to brain tumors, such as gliomas and meningiomas, have included automatic 

change detection and intensity mapping using a combination of segmentation and registration 

[42]. In these instances, registration in conjunction with additional processing/analysis provided 

relevant clinical information.  

Longitudinal imaging is also important for clinical cancer management. Screening 

programs have been recommended and implemented for breast and lung cancer that include 

annual imaging for high-risk individuals. These programs are aimed at early detection of tumors 

and inclusion of risk assessment by analyzing nodule/tumor change over time [9, 112]. Change is 

also important in assessing treatment. Current clinical practices use the RECIST as a quantitative 

measure to determine complete response, partial response, stable disease, or progressive disease 

[33]. With the advent of immunotherapy, these measures may not accurately reflect the pattern of 

response as treatment has shown to result in delayed response via no change in tumor size, 

increased tumor size, or the appearance of new lesions that occur prior to a decline in tumor 

burden [113]. The use of registration with additional analysis across longitudinal images presents 

the opportunity to monitor regional change with greater sensitivity to tumor progression. 

This chapter describes a multi-level registration algorithm designed to align similar 

anatomical structures relating to disease development in longitudinal datasets for investigating 

early precursors of disease and tracking disease progression. The algorithm was designed to 

accommodate the datasets acquired in CHAPTER 3: LONGITUDINAL MEDICAL IMAGE 

ACQUISITION, including the use of both CT and MRI, growth of an animal over time, and 

whole-body acquisition. Similar objectives have been required for alignment of longitudinal 
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images of small animal models resulting in articulated registration of images to a skeletal atlas 

[71]. We present a technique that focuses on alignment of a specific anatomy or diseased region 

of interest using surrounding anatomical structures as a guide during registration. Additional 

considerations include the need for adaptability and reusability of processing techniques to 

various phenotypes from a wide variety of disease models. First, we present our multi-level 

registration algorithm followed by its application to align desired regions of interest in the whole-

body datasets.  

5.2 Materials and methods 

 A multi-level registration algorithm was developed to align anatomical structures of 

interest in longitudinal datasets. The algorithm consisted of initialization followed by the repeated 

application of a core registration framework as the input data reduced in image field of view. 

Details regarding pre-processing, initialization, the registration framework, the multi-level 

process, and metrics used for validation are described in the following sections. All developed 

code was implemented with the ITK libraries and packaged as a 3D Slicer extension for 

interaction with the greater medical image processing community.  

 Preprocessing: Thresholding was implemented as a pre-processing step in the event of 

large disparities in intensities between fixed and moving images. For example, brain imaging in 

MRI results in greater detail about the brain structures compared with CT brain imaging. Upper 

and lower thresholds were user defined such that the image intensities above and below the 

defined thresholds, respectively, were set to the given thresholds. 

 Initialization: Initialization of the complete multi-level approach was performed using 

alignment via the center of geometry of the images. Additional initialization was performed for 

image sets with a large disparity in the coverage of anatomy (i.e. CT coverage including the 

chest, abdomen, and pelvis in a single dataset aligned with an MRI dataset containing the chest) 

and/or large positional changes across time points as shown in Figure 5-1. For large translational 

and rotational differences, the negative mutual information metric was calculated between the 

two images at defined translation steps and/or rotational steps. The moving image was translated 

along the length of the fixed image in a desired direction – axial, coronal, and/or sagittal – in 

twenty equal steps. The translation resulting in the largest negative value was chosen as a new 

initialization. After the desired translation was acquired, the moving image was rotated from -45o 

to 45o in 2o steps about a desired plane – axial, coronal, and/or sagittal – to acquire the optimal 
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rotational alignment. Additionally, for targeted region of interest acquisitions, rasterization 

through the fixed image in 125 steps was performed (i.e. MRI brain scan aligned with the CT 

head scan). Lastly, if those initialization techniques were inadequate, the use of a manually 

defined transformation was optional for initialization. 

 
Figure 5-1: Anatomic coverage by modalities. Visual demonstration of the anatomic coverage in the (A) 

head for both MRI and CT and the rest of the body for (B) CT and (C) MRI. 

 

Registration framework: A registration framework was developed to align images 

without non-linear warping of the data, preventing the distortion of data related to disease 

development and/or change. Registration was performed with a rigid transform allowing for 
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global translation, global rotation, and anisotropic scaling accounting for changes in positioning 

and growth of the animal over time. The rigid transformation is defined in equation ( 5-1 ) where 

x` is the transformed point, x is the original point, S is the scaling matrix, T is the translation 

vector, and Rv is the rotational matrix.  

𝒙′ = (𝑅𝑣 + 𝑆)𝒙 + 𝑇, where  

𝑆 =  (

𝑠0 − 1 0 0
0 𝑠1 − 1 0
0 0 𝑠2 − 1

) and 𝑇 =  (

𝑡0

𝑡1

𝑡2

) 
( 5-1 ) 

  

Rv is the rotational component of the transformation described by a unit quaternion, known as a 

versor, defined in equation ( 5-2 ), where α is the rotation angle and u is the axis of rotation. The 

rotational matrix, Rv, can then be generated by equation ( 5-3 ) [114].  

𝑞 = 𝑤 + 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 = 𝑤 + (𝑥, 𝑦, 𝑧) = 𝑐𝑜𝑠(𝛼
2⁄ ) + 𝑠i𝑛(𝛼

2⁄ ) 𝑢 ( 5-2 ) 

 

𝑅𝑣 =  [

𝑤2 + 𝑥2 − 𝑦2 − 𝑧2 2𝑥𝑦 − 2𝑤𝑧 2𝑤𝑦 + 2𝑥𝑧

2𝑤𝑧 + 2𝑥𝑦 𝑤2 − 𝑥2 + 𝑦2 − 𝑧2 2𝑦𝑧 − 2𝑤𝑥

2𝑥𝑧 − 2𝑤𝑦 2𝑤𝑥 + 2𝑦𝑧 𝑤2 − 𝑥2 − 𝑦2 + 𝑧2

]  ( 5-3 ) 

  

During registration, a regular step gradient descent optimizer parsed through the parameter space 

of the defined transform until the negative mutual information was minimized. Mutual 

information was chosen as the metric for its adaptability in registration of multi-modality datasets 

and calculates the amount of statistical dependence between the two images. It is defined in 

equation ( 5-4 ) where H(F) and H(M) define the entropies of the individual images and H(F, M) 

defines the joint entropy [73]. Entropy is defined in equation ( 5-5 ) where 𝑝𝐴(𝑎) is the 

probability of intensity a occurring in image A as defined by the histogram of the image 

intensities.  

𝑀𝑢𝑡𝑢𝑎𝑙 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛: 𝑀𝐼(𝐹, 𝑀) = 𝐻(𝐹) + 𝐻(𝑀) − 𝐻(𝐹, 𝑀) ( 5-4 ) 

  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦: 𝐻(𝐴) =  − ∫ 𝑝𝐴(𝑎) 𝑙𝑜𝑔𝑝𝐴(𝑎)  𝑑𝑎 
( 5-5 ) 

  

Region of interest selection: Volumetric rectangular regions of interest (ROIs) were 

selected in the fixed image space only to reduce the image field of view at each level, 
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demonstrated in Figure 5-2. Initial field of view corresponded to all available image data. ROIs 

were then defined isolating an anatomic region (i.e. thoracic organs, abdominal organs) to reduce 

the field of view. Further reduction was achieved with a final ROI isolating a specific anatomy of 

interest (i.e. upper right lung, brain, kidney). For adaptability to a wide array of disease models, 

minimal restrictions were placed on the number of ROIs created given they correspond to the 

number of desired registration levels and are generated such that they reduce the field of view at 

each level.  

Multi-level approach: Following initialization, the registration framework was applied 

and the field of view was reduced for the number of desired levels in the following manner. All 

previous transforms were applied to the initial moving image, including the initial transform, 

resulting in the moving image defined in fixed image space. Both the fixed and moving images 

were then cropped per the first defined ROI and the registration framework was applied to the 

cropped images. This process – transformation, cropping, registration – defined a level, was then 

repeated for the specified number of ROIs.  

 
Figure 5-2: Multi-level regions and anatomies of interest. Demonstration of the reduction in volume used 

at each level of registration using three-dimensional renderings of the masks used for validation and 

isolation of the skeleton. The largest volume (gray box) was used for whole image registration. The red 

volume indicates the second from last level of reduction (F-1) and the yellow box indicates the final level of 

reduction (F). 
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Figure 5-3: Registration flow. Illustration of how CT and MRI images were registered and aligned in the 

image space from the first time point. Lines represent the relationship between images such that solid lines 

extend from the moving image to the fixed image and the dotted line represents the resampling of the image 

from moving image space to fixed image space.  

 

Application: The multi-level registration algorithm was applied to align the acquired 

longitudinal datasets described in CHAPTER 3: LONGITUDINAL MEDICAL IMAGE 

ACQUISITION focused on three anatomies of interest: the brain, the upper right lung, and the 

right kidney. Non-contrast, chest-abdomen-pelvis CT images at each time point were registered to 

the corresponding CT images acquired at the first time point. Non-contrast abdominal VIBE and 

post-contrast chest VIBE MRI acquisitions were then registered to the CT image acquired at the 

first time point through registration with the corresponding CT image previously transformed into 

baseline image space as described in Figure 5-3. All final transformed images were presented in 

the first time point image space to enable direct comparison with the first CT image acquired. 

To demonstrate the benefit of a multi-level approach, a second set of registrations was 

performed on solely the anatomy of interest isolated with a rectangular ROI. ROIs were created 

independently in all acquired images corresponding to the anatomies of interest and used to crop 

each image. Registration was performed between cropped images using the same rigid 

registration framework initialized by center of geometry. Results were similarly presented in 

baseline image space. 

Validation: Validation was performed with visual assessment, target overlap measures, 

and average Hausdorff distance measures to assess the performance of the two registration 

methods. Quantitative measures were obtained after initialization and after each level of 
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registration to assess the performance of the multi-level registration algorithm. For comparison to 

the multi-level approach, equivalent quantitative measures were obtained on the results from the 

single step, cropped image registrations. Difference measures were calculated comparing results 

between the two registration methods obtained on the same anatomy of interest. Differences were 

tested for normality using the Jarque-Bera goodness-of-fit test and significance was determined 

with a paired t-test or a Wilcoxon signed paired rank test for normal and non-normal data, 

respectively. 

Lung masks in CT images were generated via in-house software (PASS: Pulmonary 

Analysis Software Suite [115]) excluding major airways and vessels to assess gross overlap of the 

lungs. For assessment of internal alignment of the lungs, CT airway masks were acquired with the 

Apollo software (VIDA Diagnostics, Coralville, IA) and eroded to isolate the main airway 

branches. MRI airway masks, incorporating the trachea and the left and right main bronchi, CT 

kidney masks, and MRI kidney masks were manually segmented with the Editor module in 3D 

Slicer. CT and MRI brain masks were acquired with a basic thresholding technique and manually 

modified using the Editor module. These segmentation masks were then used to acquire 

quantitative measures for registration validation. 

Target overlap (TO), defined in equation ( 5-6 ), was used to calculate the amount of 

overlap of segmented structures with respect to the fixed image mask where 𝑀𝑓 is a mask of the 

anatomy in the fixed image and 𝑀𝑚 is the mask of the anatomy in the moving image. This relates 

to the sensitivity of the algorithm, indicating the percent of voxels that are correctly aligned. A 

value of zero indicates no overlap, while a value of one indicates perfect overlap [116].  

𝑇𝑎𝑟𝑔𝑒𝑡 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (𝑇𝑂) =  
|𝑀𝑓 ∩ 𝑀𝑚|

|𝑀𝑓|
 ( 5-6 ) 

  

Distance measures were also acquired to assess misalignment at the boundary of the 

aligned structures. The average Hausdorff distance (aHD) was calculated by averaging the 

minimum distances between edge pixels, after zeroing all negative distances to remove areas of 

overlap. The formula is shown in equation ( 5-7 ) where 𝑖 are edge pixels in 𝑀𝑓and 𝑗 are edge 

pixels in 𝑀𝑚. Calculations considered the distances from the moving mask to the fixed mask and 

vice versa. A value of zero indicates perfect border alignment where a value greater than zero 

indicates misalignment expressed in millimeters. 
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 An outline of the completed algorithm is displayed in Table 5-1 and the completed 

graphical user interface within 3D Slicer is displayed in Figure 5-4.  

Table 5-1: Multi-level registration algorithm. An outline of the multi-level registration algorithm to align 

the moving image to the fixed image at each level.  

Read in fixed image (F) and moving image (M) 

If fixed image transform is defined, apply to fixed image (F) 

Perform preprocessing 

Perform initialization 

Add initial transform to composite transform 

For the number of defined levels 

If number of levels is equal to the number of ROIs and it is the first iteration 

Apply composite transform to moving image (M) 

Crop fixed image (F) and moving image (M) with first defined ROI 

Define cropped images as fixed image (f = F) and moving image (m = M) 

If it is not the first iteration 

Apply composite transform to moving image (M) 

Crop fixed image (F) and moving image (M) with the next defined ROI 

Define cropped images as fixed image (f = F) and moving image (m = M) 

Else  

Apply composite transform to moving image (M) 

Define the fixed image (f = F) and moving image (m = M) 

If it is not the first iteration 

Divide previous level registration parameters by the parameter relaxation factor 

Else 

Set registration parameters as defined 

Apply registration framework on the defined fixed image (f) and moving image (m) 

Add resulting transform to composite transform 

 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐻𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑎𝐻𝐷)

=   
1

2
(

1

𝐼
∑

𝑚𝑖𝑛
𝑖 ∈ 𝑀𝑓

{ 𝑑(𝑖, 𝑗) }

𝐼

𝑖=1

+
1

𝐽
∑

𝑚𝑖𝑛
𝑗 ∈ 𝑀𝑚

{ 𝑑(𝑖, 𝑗) }

𝐽

𝑗=1

) 
( 5-7 ) 
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Figure 5-4: Slicer GUI with multi-level registration GUI. A screenshot of the graphical user interface 

designed within 3D Slicer for the multi-level registration. This corresponds to the left most panel in 3D 

Slicer with windows for image viewing and rendering in panels to the right. 
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Figure 5-5: Multi-level registration results. Final registrations for a single subject of the brain with 

datasets acquired at 12 and 16 months of age (first row), upper right lung with datasets acquired at 12 and 

18 months of age (middle row), and the right kidney with datasets acquired at 12 and 27 months of age 

(bottom row) shown through (A) CT to CT registrations and (B) MRI to CT registrations. The fixed image 

used for registration is shown in standard grayscale intensities with the moving image shown as an overlap 

with cyan intensities. The red box indicates the second from last level volume reduction (F-1) and the 

yellow box indicates the final volume reduction (F). (C) Overlap of three-dimensional renderings of the 

masks used for validation to demonstrate volumetric alignment with both CT to CT and MRI to CT 

registrations with the same color scheme applied from A and B. 

5.3 Results 

A total of 90 CT to CT and 83 MRI to CT multi-level registrations were performed for a 

total of 173 registrations for all three volumes of interest. Three levels of registration were 

utilized for alignment of the upper right lung and right kidney with both CT to CT and MRI to CT 

registrations with applied ROIs illustrated in Figure 5-2. Initialization was performed by center of 

geometry with additional translational or rotational alignment when large discrepancies in 
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alignment were identified. A total of 5 manual initializations were required for the upper right 

lung registrations and 11 for the right kidney registrations. Initialization was followed by whole-

image registration for alignment with the baseline CT image. Following whole image registration, 

the second level of registration used an average 85% and 88% reduction in fixed image volume to 

isolate the lungs and the abdomen, respectively. An additional average of 98% and 93% reduction 

in fixed image volume was used to isolate the upper right lung and right kidney, respectively, for 

the last level of registration. Total amount of time required for upper right lung and right kidney 

registration was 143 (± 39) seconds and 126 (± 51) seconds, respectively. 

Two levels of registration were used for CT to CT alignment of the brain initialized by 

center of geometry with applied ROIs illustrated in Figure 5-2. Initialization was followed by 

whole image registration and a reduction of 95% in fixed image volume for the final level of 

registration for a total time of 43 (± 16) seconds. Due to large disparities between intensities 

within the brain in CT and MRI, MRI brain scans were preprocessed by thresholding such that all 

intensities greater than a value of 145 were set to 145. This value was chosen such that a uniform 

intensity within the brain was observed mimicking the corresponding CT scan. Initialization was 

performed using rasterization along the CT head scan with 11 manual initializations required and 

was followed with 1 level of registration corresponding to the ROI defined around the brain in the 

CT image requiring 25 (± 21) seconds to complete. 

Registrations were visually confirmed showing a majority overlap of desired structures. 

Due to the rigid transform, qualitative assessment was focused on structures within the region of 

interest. Visual demonstration of final alignment can be seen in Figure 5-5. Final transforms 

showed decreasing amounts of rotation at each level with an average rotation of 1.60 (± 1.56) 

degrees required for all transforms at level 1, 1.39 (± 1.17)o at level 2, and 0.29 (± 0.23)o at level 

3. Similar trends were observed across all other parameters with translations of 1.80 (± 12.41) 

mm, 0.95 (± 5.97), and 0.08 (± 0.76) mm for all axes during level 1, level 2, and level 3 

registrations, respectively. Minimal scaling was observed across all levels of registration with 

average values of 1.01 (± 0.03) in all axes.  
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Figure 5-6: Multi-level registration validation. Validation measures (mean ± standard deviation) by level 

for each anatomy of interest separated out by type of registration (CT-CT, MRI-CT) showing the increase 

in target overlap (A) and decrease in average Hausdorff distance (B) as the volumetric region of interest 

decreased. The measures are in order of initialization, second from last volume reduction (whole dataset 

registration for the upper right lung and right kidney), first from last volume reduction (abdominal and 

chest region of interest registration and whole dataset registration for the brain), and final volume 

reduction level and compared to results from the cropped registrations.  
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Figure 5-7: Longitudinal registration results. Final (A) brain, (B) lung, and (C) kidney registrations (CT-

CT top, MRI-CT bottom) for subjects with datasets acquired at 12, 14, 16, and 18 months of age. The red 

box indicates the second from last volume reduction (F-1) and the yellow box indicates final volume 

reduction (F). Images are presented in registered image space corresponding to 12 months of age. 
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To validate the alignment of anatomies at each step of registration, TO and aHD 

measures were obtained. The resulting transforms following initialization and each subsequent 

level of registration were used to align the anatomical masks to the baseline masks. Once the 

masks were aligned, TO and aHD measures were computed to quantify the agreement of 

anatomies. Similar trends were observed with all registrations. Initialization showed the least 

amount of TO at 0.43 (± 0.29) for all registrations with increasing TO seen with each level of 

registration with an average of 0.54 (± 0.24) TO after level 1, 0.72 (± 0.19) at level 2, and a final 

TO of 0.85 (± 0.11) at level 3. Similar trends were observed regarding the aHD with measures of 

7.14 (± 7.93) mm, 3.68 (± 4.74) mm, 1.44 (± 1.71) mm, and 0.41 (±0.83) mm, respectively from 

initialization to final registration result. CT to CT registrations performed better than MRI to CT 

registrations with an average final TO of 0.90 (± 0.08) compared to 0.78 (±0.11) and final aHD 

measures of 0.34 (± 0.81) mm compared to 0.57 (± 0.97) mm, respectively. Given in-plane 

resolutions of 0.6-0.8 x 0.6-0.8 mm2 for CT acquisitions (depending on field of view) and 1.37 x 

1.37 mm2 for MRI acquisitions, final aHD measurements were sub-resolution on average. 

Similar trends were observed among individual regions of interest, seen in Figure 5-6. CT 

to CT registration of the upper right lung via the lung mask showed the greatest TO and smallest 

aHD with final values of 0.96 (±0.03) and 0.10 (± 0.06) mm, respectively. The smallest TO for 

CT to CT registrations was observed for the right kidney with a final TO of 0.85 (±0.08) and aHD 

of 0.36 (±0.18) mm. For MRI to CT registrations, the greatest alignment was in the brain with 

final values of 0.86 (± 0.08) and 0.32 (± 0.14) mm for TO and aHD, respectively. Overall, the 

smallest final TO and largest aHD were observed in the major airways for the MRI to CT 

registrations with values of 0.68 (± 0.13) and 1.01 (± 1.63) mm, respectively. An example of 

longitudinal alignment is shown in Figure 5-7 demonstrating the final registered location of the 

brain, upper right lung, and right kidney in baseline CT image space. 

An additional 173 registrations were performed solely on the cropped images and 

difference measures were calculated. Results of the comparison between the final level of the 

multi-resolution approach (Final), compared to that of the cropped regions without the multi-level 

approach (Cropped) are summarized in Figure 5-6. Overall, the multi-level registration algorithm 

had an improvement of TO of 0.05 (± 0.14) greater and an improved aHD of 0.47 (± 1.2) mm less 

than the cropped registrations. The greatest improvement was seen in registration of the upper 

right lung comparing measures obtained from the airway masks with average TO improvement of 

0.15 (± 0.18) for CT to CT registrations (p-value <0.0001) and 0.15 (± 0.23) for CT to MRI 

registrations (p-value 0.0036). Average HD measures improved on average by 1.13 (± 1.80) mm 
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for CT to CT registrations (p-value <0.0001) and by 1.17 (± 1.88) mm for CT to MRI 

registrations (p-value 0.0049). The least amount of improvement was seen in registration of the 

brain with minimal improvement of 0.03 (± 0.04) for TO (p-value 0.0012) and 0.00 (± 0.12) mm 

for aHD (p-value 0.4653) for CT to CT registrations. CT to MRI cropped registrations in the 

brain showed a higher TO than the multi-level registration algorithm with an average value of 

0.06 (± 0.07) (p-value < 0.0001); however, the multi-level registration algorithm still showed an 

average 0.68 (± 1.07) mm improvement in aHD measures (p-value 0.0004). Significant 

improvement was observed with CT to CT registration of the right kidney (TO: p-value 0.0006, 

aHD: p-value 0.0135); however, no significance was seen in CT to MRI registrations of the right 

kidney (TO: p-value 0.3695, aHD: p-value 0.2059).  

5.4 Discussion 

We have developed a multi-level registration algorithm for alignment of longitudinal 

images. The algorithm was designed to accommodate multiple applications with minimal 

restrictions placed on the number of levels or the reduction in size of the regions of interest. We 

have demonstrated its capabilities on longitudinally acquired CT and MRI data of pigs showing 

alignment in the brain, upper right lung, and right kidney with improvement shown over isolated 

registration of the anatomy of interest. Common preprocessing and initialization techniques were 

included in the pipeline; however, those included are not exclusive. The registration framework 

can also be adapted to fit a more specific application while still incorporating the multi-level 

approach. Here, we have developed a framework that can be generalized to fit a wide range of 

applications throughout the body, such as disease progression and response to treatment, as well 

as injury resolution. Additional inclusion of the 3D Slicer and ITK communities allows for 

inherent interaction with our algorithm and the greater medical imaging community.  

Our registration framework contains a rigid transform allowing for global translation and 

rotation and anisotropic scaling. The nature of biological variability in longitudinal imaging poses 

a unique problem with respect to the fact that there is not an expected perfect match between two 

time points, especially if major disease changes have occurred. With the use of a rigid transform, 

it is guaranteed that visual representation of the region of interest, and potential disease change 

within, will be maintained. Additionally, the multi-level process accommodates for the 

comprehensive anatomy acquired in the images and iteratively focuses on a specific region of 

interest. Following this process, the addition of a non-rigid registration algorithm could further 

improve the final TO and aHD of structures within a desired region of interest. Several such 
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longitudinal algorithms have been reported for specific anatomical alignment with registration 

performed on a previously isolated volume of interest. These include alignment of tumors in 

human breast [43-45, 117], liver [41], brain [42, 118], and lung [31] cancer for modeling organ 

and tumor deformation and assessing volume changes during treatment. 

 In addition to biological change, positioning of the subject between time points and 

modalities and imaging modality coverage influenced final alignment. The wide range of 

techniques used in this study for initialization accommodated significant positioning differences. 

There were only 27 image registrations out of 173 that required manual initialization, the majority 

(20/27) which were for MRI to CT image registrations. For this study, our image registration 

method used the maximum amount of information in each image. Due to the wide coverage of 

anatomy, the acquired CT images contained a much larger field of view compared to the acquired 

MRI images. Specific acquisition of targeted anatomy may reduce the need for a complex 

initialization process and simplify the number of levels required during image registration. In 

addition, research has been done extending feature detection algorithms to medical imaging, such 

as scale invariant feature transform (SIFT) and speeded up robust features (SURF), for feature 

based registration [119]. Recent applications to multimodal registration [120] and stitching of 

spine MRI datasets [121] suggest the potential for use as an initialization technique which may 

also reduce the need for manual initialization specifically in multimodal applications with large 

differences in image field of view.  

The use of the multi-level approach allows for the incorporation of various levels of 

reference anatomy to aid in alignment of a diseased region. We included a comparison between 

our developed approach and isolated registration of the anatomy of interest using the same 

registration framework. The multi-level approach showed significant improvement in all but one 

of the registration tasks. The largest and most significant improvement was noted in alignment of 

the upper right lung, specifically in alignment of the major airways. This may be due to the small 

amount of surrounding reference anatomy compared to the right kidney and brain which showed 

less improvement. Significant improvement was observed in CT to CT registrations of the right 

kidney with no significance found in the CT to MRI registrations. This may be due to the 

acquisition of CT and MRI occurring on the same day with minimal positioning differences 

between modalities. CT to MRI registration of the brain showed a lower TO with our method 

compared to isolated registration; however, a greater aHD distance was observed. Visual 

inspection of the isolated registrations showed large amounts of rotation not corrected for in the 

final transformation without the multi-level approach. This indicates the importance of 
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initialization given the wide range in image field of views at acquisition, specifically in 

multimodal applications.  

We demonstrated the use of a maximum of three levels due to the large reduction in 

volume used at each level with a final reduction focused on a single anatomical structure. For our 

method, a level is defined as the combined application of a set of transformations to the moving 

image, cropping of the fixed and moving images, and registration of these images. In this 

instance, the registration framework is applied to varying image field of views at each level 

depending on the defined ROIs. Several other multi-level registration techniques have been 

widely used in image processing to reduce the complexity of the registration process. These 

include increasing the complexity of the transformation in a hierarchical approach [122] and 

decreasing the amount of applied smoothing or increasing the resolution of the image data at each 

level in a scale space approach [123]. In comparison, these methods are applied to the entire 

image field of view at each registration level and may be more applicable given a targeted image 

acquisition where the region of interest composes the entire image. 

 In conclusion, in this study we have developed and applied a multi-level registration 

approach to longitudinally acquired CT and MRI image datasets. We have shown generalizability 

of the algorithm through the registration of three regions of interest – brain, upper right lung, and 

right kidney – in both CT and MRI images. Further, it was applied to longitudinal image datasets 

of a porcine disease model presenting substantial longitudinal changes in subject anatomy due to 

disease progression. The new image registration method reported here increases the ability to 

extract meaningful CT and MRI image biomarkers of disease to systematically phenotype 

presentation and progression of disease.   

  



54 
 

CHAPTER 6:  LONGITUDINAL FEATURE EXTRACTION 

6.1 Introduction 

Understanding the spatial and temporal relationship between imaging based features has 

the potential to provide further insight into differentiating cancer phenotypes. This trend towards 

personalized medicine has led to the growth in development of quantitative imaging biomarkers 

for identification and differentiation of pathologic processes [124]. This has involved 

segmentation of a tumor or region of interest followed by extensive image feature extraction and 

can include external feature inclusion, such as demographic and genomic information. The most 

important features are then identified with a feature reduction schema and used for classification 

[49, 51]. In these situations, measurements and features are acquired and assessed independently 

in each image. Incorporating feature change over time, including regional matching of features 

via image registration, gives way to further provide important information in disease change. 

Current imaging features used in clinical assessment have included basic quantitative size 

measurements and qualitative assessment of visual tumor characteristics. Of the most notable, 

size measurements have included the World Health Organization bi-dimensional measurement 

[32] and the Response Evaluation Criteria in Solid Tumors (RECIST) uni-dimensional 

measurement – the current clinical standard [33, 34]. However, these criteria are limited to solid 

tumors, reliant upon subjective measurements, and do not consider the volumetric nature of 

medical imaging. With improvements in medical imaging and image segmentation techniques, 

recent research has focused on volumetric assessment of tumor burden as a more representative 

measure [39, 125-127]. These advancements, in conjunction with image registration, present the 

opportunity to additionally track change in shape and directional growth over time as valuable 

future biomarkers. 

This chapter focuses on an extension of the multi-level registration algorithm to 

demonstrate the ability to incorporate directional growth into progression and response evaluation 

and include regional matching of features for the identification of early biomarkers of disease. 

The developed techniques are applied to a phantom dataset focused on a chest CT with a 

simulated tumor in the upper left lung and simulated progression of a non-solid to solid ground 

glass lesion in the upper right lung. Applications of the longitudinal feature extraction approach 

and additional methods for the evaluation of specific animal models are described in CHAPTER 

7 – CHAPTER 10. 
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6.2 Materials and methods 

An extension was developed in the 3D Slicer framework to aid in the extraction of 

features in aligned longitudinal datasets. The extension can accommodate two or more image 

datasets from the same subject. Additional input is the transforms required to align each image 

into the reference image space as described in CHAPTER 5: MULTI-LEVEL REGISTRATION. 

The extension subsequently allows: a) features to be extracted from a consistent, propagated 

volume of interest and/or b) relative change in shape over time determined from independently 

segmented volumes of interest. An outline of the algorithm is displayed in Table 6-1 with the 

generated graphical user interface is displayed in Figure 6-1. 

Table 6-1: Longitudinal feature extraction algorithm. An outline of the algorithm designed to extract 

features in an aligned longitudinally acquired dataset. User activated actions and inputs are obtained from 

the graphical user interface (GUI) and indicated in bold. 

Specify the number of images, N, in longitudinal dataset 

Select a file to store results 

Identify reference image, I1, and corresponding segmentation, S1 

If resample mask (individual image space) 

For N-1 images In 

Define transform, Tn, from image In to image I1 

Apply the inverse transform, inv(Tn), to S1 resulting in Sn 

If calculate statistics 

For N images In 

Define image In and corresponding segmentation Sn 

Extract features from image In within Sn 

Print out results to file 

If resample mask (reference image space) 

For N-1 segmentations Sn 

Apply transform, Tn, to segmentation resulting in Sn in reference image space 

If calculate directional growth 

Identify minimum and maximum indices of segmentation for X, Y, and Z axes in 

reference segmentation S1 

For N-1 segmentations 

Identify minimum and maximum indices of segmentation Sn for X, Y, and Z axes 

Take difference between results and reference values 

Multiply by corresponding spacing obtained from reference segmentation 

Print out results to file 
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Figure 6-1: Longitudinal feature extraction GUI. A screenshot of the graphical user interface designed 

within 3D Slicer for longitudinal feature extraction. The number of images is variable and renders the 

number of dialog boxes for input. This corresponds to the left most panel in 3D Slicer with windows for 

image viewing and rendering in panels to the right. 
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Phantom generation: Phantom images were generated simulating two clinical 

progressions: the growth of a tumor in the upper left lung and the progression of a non-solid 

ground glass lesion to the development of a solid component. A previously acquired chest-

abdomen-pelvis CT scan from a single subject was chosen as the first imaging time point. For the 

simulated tumor component, a mask was created identifying the size, location, and shape of a 

pseudo-tumor in the upper left lung. This was repeated two more times with the masked region 

increasing in size simulating growth. Intensities corresponding to fat were inserted into the 

corresponding region to model a tumor using equation ( 6-1 ) where Itumor corresponds to the 

resulting image with the pseudo-tumor composed of the original image, Ioriginal, and fat intensities, 

Iinsert, using the created mask, Mtumor.  

𝐼𝑡𝑢𝑚𝑜𝑟 =  𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ∗  𝑖𝑛𝑣(𝑀𝑡𝑢𝑚𝑜𝑟) +  𝐼𝑖𝑛𝑠𝑒𝑟𝑡 ∗  𝑀𝑡𝑢𝑚𝑜𝑟 ( 6-1 ) 

  

This process was repeated to generate the development of a part-solid lesion in the upper 

right lung. To simulate an original non-solid lesion, original lung intensities were adjusted to 

zero, multiplied by three, readjusted by the same factor and inserted into a corresponding masked 

region, Iinsert. A solid component was added to the non-solid lesion by incorporating intensities 

corresponding to muscle, Iinsert, in a similar manner for the last two simulated time points. This 

process resulted in 4 time points, illustrated in Figure 6-2, labeled as time point 1-4. Transforms 

were then applied to each pseudo image, modeled after the transforms observed in CHAPTER 5: 

MULTI-LEVEL REGISTRATION, resulting in a phantom longitudinal dataset with tumor 

growth.  

Propagated volume of interest – ground glass lesion: Three volumes of interest were 

segmented via the draw tool in the Editor module in 3D Slicer corresponding to a normal lung 

region, a non-solid component, and the solid component within the part-solid lesion in the upper 

right lung of the fourth generated time point. Images and transforms, obtained using the multi-

level registration algorithm, were input into the created extension with the fourth time point as the 

reference image. The defined segmentations were propagated to all other images through the 

application of the transform from the reference image space to each individual image; this 

corresponded to the inverse of the transform acquired during registration. Segmentations were 

then associated with the appropriate image and basic imaging features were acquired, including 

volume, mean intensity, standard deviation of intensities, and minimum and maximum intensities, 

from each segmentation and image pair in its corresponding image space. Trends were observed 
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to demonstrate change in the simulated diseased region across time points including features prior 

to disease development compared to features obtained from normally appearing lung tissue.  

Independent segmentations – solid tumor: Individual segmentations were acquired 

isolating the solid tumor in the upper left lung in time points 2-4. The segmentation from the 

second time point was propagated back to the first time point to identify the region corresponding 

to pre-tumor development. Segmentations were associated with the appropriate image and 

intensity features were acquired as listed above. Basic shape features were also identified through 

finding the extent of the tumor in reference image space. This was accomplished through the 

application of the transform from each image to the reference image space on the segmentation. 

The directional extent of the transform was then identified and comparative growth in each 

direction in reference image space was reported. As a baseline metric, the RECIST diameter was 

independently acquired in all images prior to registration. Following registration, regional 

diameters were acquired tracking the RECIST diameter across all images corresponding to the 

second and fourth time points to assess growth of the tumor in a single plane.  

6.3 Results 

 Normal intensities, determined to be in a range of -921 HU to -679 HU with an average 

value of -879.62 (± 23.09) HU, were consistently identified across all images and all regions in 

the first time point, illustrated in Figure 6-2 and quantitatively described in Figure 6-3. In 

comparison, the part-solid lesion in the upper right lung showed an increase in density to -614.00 

(± 72.89) HU in the second time point corresponding to a non-solid lesion. Values in that region 

remained relatively stable at -590.75 (± 55.03) HU at time point 3 and -594.54 (± 65.79) HU at 

time point 4. Within the solid component of the ground glass lesion, a shift was similarly detected 

in the second time point with average intensities of -642.42 (± 56.16) HU prior to formation of 

the solid component. Formation of the solid component showed increasing density with average 

intensities of -28.98 (± 127.30) HU at time point 3 and 39.33 (± 38.60) HU at time point 4.  
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Figure 6-2: Generated phantom and segmentations. The generated phantom CT data (top row) illustrating the pseudo-tumor growth in the upper left lung, the 

ground glass lesion in the upper right lung and the normal lung region of interest (yellow). Individual segmentations (middle row, green regions) of the 

simulated tumor in each image. Automatically identified segmentations (bottom row) in the ground glass lesion corresponding to the solid component (red) and 

the non-solid component (blue) 
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Figure 6-3: Longitudinal feature extraction. Graphical display of the mean intensity and standard 

deviation extracted from normal lung tissue, the independent segmentations for the simulated tumor in the 

upper left lung, and the propagated segmentations from the ground glass region in the upper right lung 

showing a region progressing from a non-solid to a solid. 

 

Focusing on the features obtained from the simulated tumor in the upper left lung, seen in 

Figure 6-2, a shift was observed with an average value of -886.56 (± 13.13) HU in the original 

image without the presence of a tumor to -88.36 ± 7.83 HU after the placement of the tumor, 

shown in Figure 6-3. Subsequent time points showed an additional shift to -202.92 (± 148.44) HU 

in time point 3 and -183.57 (± 143.35) HU in time point 4 as seen in Figure 6-3. Comparing 

volumes, the tumor doubled in size between the second (0.329 mL) and third (0.721 mL) time 

points, and again tripled between the third and fourth (3.068 mL) time points for approximately 

10 times growth overall.  

As shown in Table 6-2, the RECIST diameter was measured across multiple slices 

isolating each simulated tumor ranging from 7.1 mm to 17.6 mm for a total estimated growth of 

10.5 mm in the axial plane. Following registration, the slice corresponding to the RECIST 

diameter from time point 2 showed a range of 7.1 mm to 14.9 mm in growth, while the slice 

corresponding to the RECIST diameter from time point 4 showed growth from 6.7 mm to 17.6 

mm. Comparing directional growth, minimal growth occurred in the axial plane (± X and ± Y 

growth) between time point 2 and 3 as seen in Table 6-3 with a total growth of approximately 2 

mm in both directions. Greater growth was observed between time points 2 and 4 in the axial 
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plane with total growth of approximately 9.0 mm in both directions. This change is reflected by 

the RECIST diameter; however, we can see that growth occurred more in the +X and -Y 

directions as demonstrated in Figure 6-4. In addition, growth in the ± Z directions was calculated 

where we see greater growth in the -Z direction toward the base of the lungs as illustrated in 

Figure 6-4. 

Table 6-2: RECIST measurements. The RECIST measurements obtained from the largest axial cross-

section chosen independently without registration of the time points and corresponding measurements 

following the largest axial diameter of the tumor from time point (TP) 2 and TP 4 post-registration.  
Slice Time point 2 Time point 3 Time point 4 

Pre-registration 

RECIST Various 7.1 9.7 17.6 

Post-registration 

Following RECIST (TP2) 193 7.1 8.7 14.9 

Following RECIST (TP4) 191 6.7 9.6 17.6 

 

Table 6-3: Directional growth measurements. Directional growth measures acquired from the registered 

manual segmentations in the reference image space. 

TP -X growth +X growth -Y growth +Y growth -Z growth +Z growth 

2 0 0 0 0 0 0 

3 -0.69 1.39 1.39 -0.69 0.00 -6.00 

4 -3.47 5.55 6.24 -2.77 3.00 -9.00 
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Figure 6-4: Directional growth of simulated tumor. Rendering of tumor located inside the lungs with 

corresponding coordinate system used in determining directional growth. 

6.4 Discussion 

 The ability to extract longitudinal features from a series of images that have been 

previously aligned allows for the inclusion of directional growth and the investigation of imaging 

features throughout cancer progression. Previous work has been done monitoring volumetric 

change and intensity mapping over time applied to brain tumors [42]. In this work, we focus on 

the extraction of basic imaging features and the addition of global directional growth. This was 

demonstrated with the development of a 3D Slicer extension and application to a generated 

phantom dataset to simulate the growth of two disease processes in the upper right and left lung.  

Significant work has been done developing feature extraction and classification methods, 

or computer-aided diagnosis tools, for determining the likelihood of malignancy for a large 

number of cancers [128]. We have presented the ability to extract basic intensity features in 

longitudinal datasets through the identification of a consistent segmented region across datasets. 

These basic intensity features were initially chosen due to their current integration into 3D Slicer. 

Further expansion to include histogram, tumor shape, and texture features analyzed across a 

longitudinal dataset may further improve the ability to non-invasively characterize detected 
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tumors. We believe the inclusion of longitudinal analysis will particularly benefit analysis of 

transitions from non-solid to solid tumors in the development of lung cancer as demonstrated in 

this phantom dataset [129, 130]. In these instances, borders are not clearly defined, but rather 

specific tracking of a sub-segmental region with feature and texture analysis may be performed 

with our developed tool.  

We showed the potential for detecting precursor imaging features through the 

identification of the simulated tumor location in the pre-disease image with both disease 

processes. Early detection of cancer increases the 5-year survival rate across all types of cancer 

[131]. It is well known that tumors are composed of a wide variety of tissue and typically 

encourage the development of angiogenesis and other cellular processes [132, 133]. Previous 

work has shown that image feature extraction and texture analysis including the tissue 

surrounding lung nodules [49] and breast microcalcifications [134] have proven useful in the 

diagnosis of cancer suggesting detection of lesion interaction and invasion into the surrounding 

tissue.  

Minimal limitations were placed on the selection of transform associated with each image 

to allow for the use of any registration algorithm. Due to the desire to acquire quantitative 

features in each individual image space, the transform must be inverse consistent, a characteristic 

of most biologically relevant transforms [135]. It is noted that the accuracy of the transform in 

aligning the images is important in extracting accurate features. With the integration into the 3D 

Slicer framework, any segmentation can be easily edited using the Editor module [74, 136]. In 

addition, more advanced segmentation algorithms, such as region growing, may be incorporated 

to provide automatic segmentation of tumors using our tool for automatic identification of an 

initial starting point across longitudinal images [137].  

Lastly, we demonstrated the ability to track directional growth of tumors through a 

simple analysis by comparing the extent of the registered tumors over time. It is well established 

that limitations of the RECIST measurement include lack of volumetric information and the use 

of subjective one-dimensional measurements [138]. Automatic measurements allow for a more 

objective approach and can easily incorporate growth in multiple dimensions. Volumetric 

analysis has been explored to improve the assessment of tumor burden [39, 42, 45, 125-127]. 

Beyond volume, analysis of the Jacobian following non-rigid image registration has also been 

explored for breast cancer tumors as a potential biomarker for predicting response in treatment 

[44]. Additional growth patterns, symmetrical/asymmetrical and directional growth toward 
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vessels/lymph nodes may provide further information about malignancy, aiding non-invasive risk 

assessment and/or refined treatment selection.   
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CHAPTER 7:  LI-FRAUMENI 

7.1 Introduction 

Li-Fraumeni is a condition found in humans that is identified by a germline mutation in 

TP53, tumor protein 53. This mutation results in a strong predisposition to tumor development as 

normal functioning TP53 is essential in halting the cell cycle for DNA repair and initiating 

apoptosis in cells that fail to repair damaged DNA. The overall risk of cancer developing in 

human carriers of this mutation is 75% in males and 93% in females with an overall 40% risk of 

cancer developing within the first 20 years of life [139]. This mutation has been commonly seen 

in a variety of human cancers [140] and targeted TP53 mouse models have been shown to 

develop a wide range of tumors including carcinomas, soft tissue and osteosarcomas, leukemia, 

and glioblastoma multiform [141-144].  

A genetically modified Yucatan miniature pig model with Li-Fraumeni syndrome was 

created with both heterozygote (TP53R167H/+) and homozygote (TP53R176H/R176H) mutations by 

Exemplar Genetics (Sioux Center, Iowa). Gene targeting was used to introduce a R167H 

missense mutation in the endogenous TP53 gene. TP53 targeted pigs were generated through 

somatic cell nuclear transfer, in which the TP53 targeted vector was introduced into a pig fetal 

fibroblast, inserted into harvested oocytes, and the resulting embryos transferred to a recipient 

sow producing heterozygote piglets. Of the heterozygote animals, a cohort was used for disease 

monitoring and a cohort was bred to produce homozygote animals.  

This chapter presents the application of the methods described in CHAPTER 3: 

LONGITUDINAL MEDICAL IMAGE ACQUISITION for non-invasive characterization of this 

model. Due to the possibility of a wide range of cancer development, whole-body disease 

monitoring was required to determine the genotype to phenotype relationship. Data obtained from 

the heterozygote animals has previously been shown in CHAPTER 3: LONGITUDINAL 

MEDICAL IMAGE ACQUISITION. Additionally, a full characterization of this model, 

including genetic and molecular analysis, can be seen in Sieren, et al. [63]. 
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7.2 Materials and methods 

Image acquisition: A cohort of 6 heterozygote animals and 5 homozygote animals were 

imaged for disease characterization using the image protocol acquisition methods described in 

CHAPTER 3: LONGITUDINAL MEDICAL IMAGE ACQUISITION. Heterozygote animals 

were imaged at intervals over 3 years to assess the development of disease. In comparison, 

homozygote animals were imaged upon indication of clinical signs, including palpable lymph 

nodes, abnormal blood work, and physical/behavioral abnormalities. A selection of the whole-

body protocols, listed previously in Table 3-1 and Table 3-2, were acquired for each animal at 

each screening time point. Upon detection of disease, additional targeted scans were acquired 

with protocols listed in Table 7-1. 

Table 7-1: Targeted brain MRI protocols for the homozygote TP53M/M model. Parameters for MRI 

developed for a 3-Tesla TIM Trio scanner. Scans were acquired for targeted imaging of a cranial bone 

lesion. 

  3D SPACE  

(post-contrast) 
T1 Axial T1 Sagittal/Coronal 

Scanning sequence Spin echo Spin echo Spin echo 

Acquisition type 3D 2D 2D 

Repetition time (msec) 1630 600 600 

Echo time (msec) 119 7 7.4 

Flip angle (o) 120 70 70 

Echo train length 141 1 1 

Slice thickness (mm) 0.9 4 4 

In-plane resolution 

(mm) 
0.86 x 0.86 0.625 x 0.625 0.47 x 0.47 

Acquisition matrix 256 x 194 384 x 269 512 x 256 

Number of Slices 96 19 20 

Approx. Scan time 

(min:sec) 
7:50 2:40 2:35 

Respiratory 

management 
None None None 

 

Structured reports: Structured reports, described in CHAPTER 4: STRUCTURED 

REPORTING, incorporating whole-body disease development, were used for longitudinal 

qualitative data collection. All scans were read by a radiologist and disease findings were 

recorded. The RECIST diameter, imaging characteristics, and anatomic location were identified 

for each detected tumor.  

Registration: Detected tumors were registered over all available time points using the 

multi-level registration algorithm. Subsequent CT acquisitions were registered to the first CT 
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acquisitions and MRI acquisitions were registered to CT acquisitions acquired during the same 

imaging study. Up to three levels of registration were used as described in CHAPTER 5: MULTI-

LEVEL REGISTRATION as appropriate for the location of the tumor.  

Feature extraction: Quantitative features were extracted for identified tumors using the 

methods described in CHAPTER 6: LONGITUDINAL FEATURE EXTRACTION. Tumors 

were manually segmented and volume and intensity features were extracted and directional 

growth was identified where applicable. Additional quantitative features were identified in the 

liver and spleen of each animal. Each organ was manually segmented, excluding major vessels, 

using the Pulmonary Analysis Software Suite [115] with the contrast enhanced abdominal CT 

scans. Volume and intensity features (minimum, maximum, mean, and standard deviation) were 

extracted. To assess contrast clearance in the abdominal MRI contrast enhanced VIBE sequence, 

regions of interest were identified in each scan of the sequence corresponding to the same tissue 

region. Intensity features were extracted and values were normalized to an equivalent sized region 

in the muscle to standardize across and within subject for final evaluation. Relevant measures 

were tracked by time and weight to give insight into potential disease markers.  
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Table 7-2: Li-Fraumeni imaging time points. The imaging time points acquired for characterization of the Li-Fraumeni TP53 heterozygote (M/+) and 

homozygote (M/M) model. An X indicates imaging occurred, a capital N indicates imaging occurring followed by necropsy within 24 hours, and a lowercase n 

indicates necropsy occurred without any imaging. Purple indicates that both CT and MRI were acquired where blue indicates only CT was acquired.  

  2011 2012 2013 2014 2015 2016 Necropsy 

Diagnosis Model Subject J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J-D J F M 

T
P

5
3

M
/+

 

Het 1   B             X  X  X  X   X      X             n    

Het 2   B             X  X  X  X         X             n    

Het 3   B               X  X  X         X             n    

Het 4   B             X  X  X  X   X      X             N    

Het 5   B             X  X  X  X   X      X             N    

Het 6   B             X  X  X  X   X      X         N        

  2012 2013 2014 2015 2016 2017  

Model Subject J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J-D J F M  

T
P

5
3

M
/M

 Hom 1   B      X    n                                  Lymphoma 

Hom 2   B            N                                Osteosarcoma 

Hom 3   B            X  N                              Osteosarcoma 

Hom 4                B           N                    Lymphoma 

Hom 5                   B         N                   Lymphoma 
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7.3 Results 

Het 1-6 were imaged for 4-7 time points ranging from 12 months of age to 51 months of 

age reviewed in Table 7-2. MRI and CT acquisitions were acquired at 12, 14, 16, 18, and 27 

months of age. Additional CT acquisitions were acquired at 21, 36, and/or 52 months for a subset 

of animals. Following data analysis, no spontaneous tumors were identified among heterozygote 

animals; therefore, acquired datasets were utilized for tool development as previously described 

in CHAPTER 3: LONGITUDINAL MEDICAL IMAGE ACQUISITION and as baseline 

measures for the phenotype. Disease was identified and pathologically confirmed in all 

homozygote animals within 15 months of age with 1 to 2 imaging time points acquired per animal 

as seen in Table 7-2. Lymphoma was observed in 60% (3/5), osteosarcomas in 40% (2/5), and an 

additional Wilm’s tumor in 20% (1/5).  

Imaging for subject Hom 1 occurred at 6 months of age, 4 months prior to necropsy and 

diagnosis of lymphoma. Mildly enlarged to enlarged (RECIST >10 mm) lymph nodes were 

observed throughout the abdomen. An abnormal soft tissue mass (RECIST: 8.3 cm) with an 

undefined border was indicated near the right shoulder with a hyper-intense signal seen in the 

corresponding MRI head scan. Liver and spleen volumes from the heterozygote cohort were used 

to calculate baseline trends showing R2 values of 0.8 and 0.84 for liver and spleen volumes, 

respectively, seen in Figure 7-1. Comparison with subject Hom 1 revealed an enlarged liver 

(predicted = 584.3 mL vs. 923.3 mL) and a mildly enlarged spleen (predicted = 499.8 mL vs. 532 

mL) given the weight of the animal.  

At 4 months prior to necropsy, minimal differences were observed in quantitative 

measures comparing liver and spleen values in the acquired MRI contrast-enhanced abdominal 

sequence for subject Hom 1 and the heterozygote cohort. Quantitatively, organ to muscle ratios 

were lower than those observed in the heterozygote cohort; however, ratios showed the same 

contrast enhancement pattern in the dynamic VIBE series. Heterogeneity measures also followed 

the same patterns seen in the heterozygote cohort with similar values.  

Imaging occurred at 11 and 9 months of age for subjects Hom 4 and Hom 5, respectively. 

Advanced diffuse disease was identified following the same pattern of enlarged lymph nodes, 

spleen, and liver volumes and was pathologically confirmed as lymphoma. Due to scanner 

availability, MRI protocols were not obtained for subject Hom 4 and 5.  
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Figure 7-1: Liver and spleen volumes. Scatter plot of the liver and spleen volumes versus the 

corresponding weight of each animal. Elevated liver volumes are seen in subject Hom 1 demonstrating 

early indications of lymphoma. 

 

Two spontaneous cranial osteosarcomas were observed in subjects Hom 2 and Hom 3 

with multiple peripheral lesions identified in the tibia, femur, and sacrum. CT and MRI revealed a 

28 mm right parasagittal, calvarial lytic (110 HU) tumor in subject Hom 2 illustrated in Figure 

7-2A. The tumor expanded into the cranial cavity with additional destruction of adjacent bone 

tissue. SPACE T2 MRI images showed an isointense tumor compared to the soft tissue of the 

brain. An additional post-contrast T1 head acquisition was obtained showing minimal contrast 

enhancement observed.  

Hom 3 was imaged at two screening time points at 12 and 14 months of age. Initial 

screening showed normal appearance of the brain, cranium, and frontal sinuses; however, 

peripheral lesions were identified in the long bones. At the second screening (51 days post initial 

screening) a 39 mm osteolytic (367 HU) tumor was detected with infiltration into the cranial 

cavity and frontal sinuses. MRI presentation revealed a hypo-intense signal in the T2 SPACE 

acquisition. Additional post-contrast T1 head acquisitions were acquired showing enhancement in 

the tumor. The identified peripheral lesions ranged from 8 to 18 mm presenting lytic lesions and 

heterogeneous hyper-dense lesions.  
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Multi-level registration was performed between the two acquired time points to align the 

tumor using two levels of registration. Due to the appearance in only one time point, visual 

inspection was performed to compare the tumor across all acquired datasets as seen in Figure 

7-2B.  

An additional renal tumor was located with CT and MRI in subject Hom 3, identified as 

Wilm’s tumor upon histopathologic diagnosis, illustrated in Figure 7-2C. The tumor was located 

in the right cranial pole of the kidney. Initial identification showed two components to the tumor 

(32.3 mL): solid (RECIST: 25.8 mm, 8.9 mL) and hemorrhagic (23.4 mL) components. The 

hemorrhagic component appeared hypointense under T2 imaging, while the T1 pre-contrast VIBE 

showed a hyperintense signal. The solid component of the tumor was isointense under T1 

weighting with a heterogeneous enhancement pattern throughout the tumor observed in T2 

imaging and throughout the dynamic T1 sequence post-contrast. At the second screening, the 

hemorrhagic component appeared to be resolved while the solid component of the tumor 

remained. Minimal changes in size were observed of the solid component with a decrease in 

mean CT attenuation (62 to 55 HU). Tumor characteristics showed a hypointense signal in the T1 

pre-contrast VIBE with greater exaggeration of the hypointensity upon the delivery of contrast. 

T2 characteristics also changed showing an iso to hyperintense signal compared to a hypointense 

signal seen previously. Characterization is summarized in Table 7-1. 

Multi-level registration was performed with three levels of registration. Tumors were 

segmented individually and extend of growth was determined. The resolve of the hemorrhagic 

component accounted for much of the change in growth; however, the tumor grew or shifted 4.5 

mm to the top of the kidney. 

Table 7-3: Wilm’s tumor characteristics. CT and MRI characteristics of the kidney tumor identified in 

subject Hom 3. 

Time 

point Component 
Volume 

[mL] 

Mean 

[HU] 

Standard 

Deviation 

[HU] 

T2 intensity 
T1 (VIBE) 

intensity 

1 
Solid 8.9 61.5 24.8 Heterogeneous 

Isointense/ 

Heterogeneous 

Hemorrhagic 23.4 58.8 26.8 Hypointense Hyperintense 

2 Solid 7.1 54.9 28.3 
Iso/ 

Hyperintense 
Hypointense 
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Figure 7-2: Detected tumors. (A) The lytic tumor located in the skull of subject Hom 2 showing a hypo-

intense tumor in CT and an iso-intense tumor in MRI. (B) The tumor identified in subject Hom 3 in CT 

prior to development (left) and 51 days later (middle) with corresponding MRI (right). The yellow box 

indicates the region of interest used during multi-level registration for volume reduction. (C) The Wilm’s 

tumor from subject Hom 3 see in CT (coronal, top) and MRI (axial, bottom) at the first imaging time point 

(left) and the second imaging time point (right). Red and yellow boxes indicate the regions of interest used 

during multi-level registration for volume reduction. 

 



73 
 

7.4 Discussion 

 We have presented the characterization of a heterozygote and homozygote TP53 animal 

model of disease using the developed methods described in CHAPTER 3 – CHAPTER 6. 

Heterozygote models did not develop tumors within the project time frame (4.25 years) and were 

used as a baseline measure for the phenotype. A total of 3 tumors were identified in two 

homozygote animals and qualitatively characterized using structured reports. Due to their heavy 

involvement in detoxifying and filtering the blood, quantitative characterization of the liver and 

spleen was focused upon. Indicators of disease in these organs have previously been noted by the 

heterogeneity of the liver and the size of the spleen [145-147]. Lastly, we demonstrated the 

performance of the multi-level registration algorithm for the alignment of a cranial osteosarcoma 

and a kidney lesion in two time points of a longitudinal dataset.  

Mutations in the TP53 gene are seen in approximately 50% of all human cancers [148]. 

Protein 53 (p53), encoded for by the TP53 gene, plays an important role in tumor suppression 

mainly through signaling for apoptosis, or cell death, in the event of damaged DNA. All 

homozygote animals showed the development of lymphoma, osteosarcoma, and/or 

nephroblastoma (Wilm’s tumor); cancers commonly observed in mouse models of Li-Fraumeni 

[149] and human cohorts [139, 150]. In all instances imaging was beneficial in detecting disease 

showing early indicators of lymphoma development, development of skeletal lesions, and 

progression of a kidney tumor. Due to scanner availability, MRI was only acquired for two 

homozygote animals (Hom 2, Hom 3) presenting cranial tumors and kidney tumor and provided 

additional targeted characterization for identified tumors. For the kidney tumor, MRI imaging 

characteristics were consistent with previously reported observations regarding Wilm’s tumor 

presentation as diagnosed at necropsy [151]. For all homozygote animals, detection of tumors 

aided in the timing of necropsy and guidance of tissue collection for histopathological 

examinations. In these cases, volume rendering was advantageous, specifically using CT due to 

the acquisition of isotropic voxels providing fine detail.  

In addition to imaging, the developed registration and quantitative feature extraction 

methods were used for characterization of this animal model. The lack of tumor development in 

the heterozygote animals provided a baseline for organ development revealing elevated liver 

volume as an early indicator of lymphoma in subject Hom 1. Multi-level registration was used to 

visually demonstrate tumor progression for subject Hom 3. In both instances, visualization of the 

significant disease change was possible with the rigid transform. Additionally, MRI to CT 

registrations were beneficial in highlighting the differences in distinguishing components of the 
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tumor for both imaging modalities. Quantitative features were acquired in both modalities. In CT, 

these measures related to density of the tissue, such that 0 HU corresponds to the density of water 

and -1000 HU to the density of air. MRI features were normalized to values obtained from a same 

sized region in the muscle to compare acquired values across subjects [152, 153].  

 While cancer development was seen in all five homozygote animals, there are limitations 

with this model. We focused our efforts on developing methods to determine the genotype to 

phenotype as demonstrated by the use of the heterozygote data in CHAPTER 3 – CHAPTER 6. 

This resulted in a small number of animals presenting a limited number of cancers. Mouse models 

with similar genetic background have demonstrated early development of lymphoma in addition 

to a wide range of sarcomas and carcinomas [143]. In human cohorts, breast carcinomas are the 

most frequently observed tumor types, which was not detected in this cohort. Additionally, 

detected cancers in homozygote animals were imaged upon clinical indications limiting our 

ability to longitudinally monitor cancer development as demonstrated with the heterozygote 

cohort. Disease was seen in all homozygote animals within 18 months of age (1.5 years) 

presenting a feasible research timeline. As more animals are monitored, we expect to see similar 

trends with presentation of additional cancers common to the TP53 family. After 51 months (4.25 

years), no spontaneous tumors were found in the heterozygote animals. While we do expect 

tumors to eventually develop in animals with this genetic background, this extended window 

presents the opportunity to introduce additional exposures to encourage targeted tumor 

development. 
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CHAPTER 8:  CRYSTALLINE SILICA EXPOSURE MODEL 

8.1 Introduction 

Lung cancer is the leading cause of cancer related deaths with a five-year survival rate of 

17.8% with minimal improvement seen in the last 30 years despite major scientific advancements 

[154]. TP53 mutations are commonly associated with lung cancer [155], suggesting a promising 

background for the promotion of lung cancer development. Crystalline silica (alpha quartz) as an 

environmental exposure has been shown to induce lung cancer in both animal studies [156, 157] 

and human studies [158, 159]. It has also been shown to induce pulmonary inflammation, 

progression fibrosis, airway wall thickening, and nodules; conditions that are noted by structural 

changes in the lungs identified by medical imaging [160, 161]. Given the TP53 genetic 

background of the animal models developed by Exemplar Genetics (Sioux Center, Iowa), this 

chapter presents characterization of a TP53R167H/+ animal model with additional exposure to 

crystalline silica in the lungs. Characterization of this model has also been reported in Hammond, 

et al [99].  

8.2 Materials and methods 

Model generation: To induce silicosis in the lungs, a subset (n = 3) of the Li-Fraumeni 

TP53R176H/+ heterozygote disease monitoring cohort animals were exposed to alpha quartz. 

Medium grain quartz foundry sand was ground to micron-sized (<4µm) dust using a ball mill 

(Retch, Inc., MM-400). Samples of 250 mg were weighed into clean borosilicate glass vials into 

which 5 mL of sterile 0.9% saline was pipetted. Samples were vortexed prior to loading into a 

syringe for instillation in a targeted region of the lungs. Silica was injected in the right upper lobe 

through the right apical bronchus with the aid of a bronchoscope and flushed with 2 mL of saline. 

Confirmation of the location post-injection was achieved with a CT scan.  

Image acquisition: A cohort of 6 animals, 3 exposure and 3 controls, were imaged for 

disease characterization using the image acquisition methods described in CHAPTER 3: 

LONGITUDINAL MEDICAL IMAGE ACQUISITION. Focus was placed on imaging the lungs 

for disease development. In summary, chest CT scans were obtained with a 128-multidetector 

dual-source scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany) 

to assess lung density and anatomical detail (210mAs and 120kV, a rotation time of 0.5 second, 

pitch of 1 and, a CTDIvol of 14.2 mGy). No resultant effects were observed from this exposure, 
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which is slightly higher than a standard clinical high resolution chest protocol and less than a CT 

angiography exam. Scans were acquired at an inspiratory breath-hold of 20 cmH2O following 2 

minutes of pulmonary recruitment at an equivalent PEEP. Reconstructions were performed with a 

standard body kernel at slice thicknesses of 0.75 mm for quantitative analysis. 

Chest MRI scans were acquired with a 3-Tesla MRI system (TIM Trio 3T, Siemens 

Healthcare, Forchheim, Germany) with standard surface coils. Turbo spin echo T2-weighted 

scans (TR of 5280 ms, TE of 156 ms, flip angle of 120o, and echo train length of 109) acquired in 

the axial and coronal planes were used to assess areas of increased fluid content, such as tumor 

development or inflammation. Five mm slice thicknesses were acquired with 1.4 mm x 1.8 mm 

and 1.5 mm x 2.0 mm in-plane resolution for the axial and coronal scans respectively. Respiratory 

gating was accomplished during this MRI sequence by using navigator echoes to eliminate 

respiratory induced motion artifacts. An additional post-contrast 3D single breath hold T1-

weighted VIBE thoracic MRI scan (TR of 4.3 ms, TE of 1.92 ms, flip angle of 12o) was acquired 

post intravenous administration of 0.2 mL/kg gadolinium (Magnevist, Berlex Inc, Wayne, NJ) for 

increased anatomical detail in the lungs. In-plane resolutions of 1 mm x 1.8 mm were acquired at 

slice thicknesses of 3 mm. Breath-holds at an inspiratory pressure of 20 cm H2O were used to 

reduce motion artifact for all VIBE scans. Parameters for all scans were previously reported in 

Table 3-1 and Table 3-2.  

Structured reports: Structured reports incorporating lung disease development were used 

to provide consistent and complete visual interpretation of the lungs and surrounding anatomies. 

Each structured report included the assessment of the diagnostic quality of the scan and targeted 

anatomic structures of interest. The anatomic structures of interest included the large airways, 

pleura, heart and pericardium, mediastinum and hila, chest wall and lower neck, vessels, and 

bones. Within the lungs, a total of eleven conditions were prompted for within each lobe of the 

lungs to note presence or absence. These included consolidation, bronchiectasis, atelectasis, 

bronchial wall thickening, ground glass opacities, linear opacities, nodules, emphysema, cysts, 

reticular abnormalities and honeycombing. The RECIST diameter, imaging characteristics, and 

anatomic location were identified for each detected nodule. All scans were read by an 

experienced chest radiologist and indicators of disease were recorded.  

Registration: Multi-level registration was performed focusing on the upper right lung 

corresponding to the location of crystalline silica injection. All CT scans were registered to the 

first CT acquisition prior to injection. Acquired MRI images were registered to CT scans obtained 
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at the equivalent time point. A total of three levels were used corresponding to whole image 

acquisition, the lungs, and the upper right lung.  

Feature extraction: Quantitative analysis of the CT data focused on the right cranial lobe 

of the lung to assess disease progression in the airways and surrounding lung parenchyma related 

to the silica exposure. A cylindrical region of interest was placed in the upper right lung isolating 

a non-defined region corresponding to the injection confirmation area. Equivalent regions were 

automatically propagated from the region placed in time point 1 across all datasets following 

registration. For comparison, manually placed regions were visually placed in all datasets. 

Features were extracted from both the propagated and manually placed regions and mean 

intensity trends were compared between control animals and exposure animals. To account for 

the variation in lung volume across and within subjects, density measures were normalized to the 

mean density of the entire lung. Trends were observed to indicate the presence of increased 

parenchymal density in exposure animals compared to control animals. Airway analysis was 

performed using the Apollo software (VIDA Diagnostics, Inc., Coralville, IA). Airways were 

automatically segmented and specific airways of interest were identified along the apical 

bronchial tree. The wall area fraction (wall area as a percent of the total airway area) was 

measured and compared across the first and last time point to assess change in the airways 

between the exposure and control cohorts. 
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Table 8-1: Crystalline silica exposure model imaging time points. The imaging time points acquired for characterization of the crystalline silica exposure model. 

An X indicates imaging occurred, S indicates crystalline silica exposure occurred immediately followed by imaging, a capital N indicates imaging occurring 

followed by necropsy within 24 hours, and a lowercase n indicates necropsy occurred without any imaging. Purple indicates that both CT and MRI were 

acquired where blue indicates only CT was acquired. 

  2011 2012 2013 2014 2015 2016 Necropsy 

Diagnosis Model Subject J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J-D J F M 

T
P

5
3

M
/+

 Het 1   B             X  X  X  X   X      X             n   Control 

Het 2   B             X  X  X  X         X             n   Control 

Het 3   B               X  X  X         X             n   Control 

T
P

5
3

M
/+

 

+
 S

il
ic

a
 Sil 1   B             X  S  X  X   X      X             N   Silicosis 

Sil 2   B             X  S  X  X   X      X             N   Silicosis 

Sil 3   B             X  S  X  X   X      X         N       Silicosis 
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Figure 8-1: Crystalline silica exposure. Demonstration of the progression of disease in CT in the upper right lung of subject Sil 2 across all acquired time points 

shown in the orange circle. 



80 
 

8.3 Results 

Exposure animals were imaged for a total of 7 time points ranging from 12 to 51 months 

reviewed in Table 8-1. CT and MRI were acquired for all animals at 12, 14, 16, 18, and 27 

months of age. CT was additionally acquired for all exposure animals and a single control animal 

at 21 months and prior to necropsy for exposure animals at 36 and 51 months of age. An example 

of longitudinal CT imaging showing disease progression is displayed in Figure 8-1. The effects of 

silica instillation on the right cranial lobe generated findings during serial imaging of this cohort. 

Increased ground glass opacities and multiply small nodules (2-3 mm) at 21 months of age in 

subject Sil 3 were noted from the structured reports. Overall, the cranial lobes in both exposure 

and control animals had a high number of reported findings with multiple minor transient changes 

as previously reported upon in CHAPTER 4: STRUCTURED REPORTING; however, minimal 

differences were observed across cohorts in the number and type of condition noted.  

Quantitative CT based density and airway measures were obtained to objectively 

compare the severity and progression of structural changes in exposure versus control cohorts. 

Analyzed airways and parenchymal regions of interest are displayed in Figure 8-2. Similar trends 

were identified with both manually placed and propagated regions as displayed in Figure 8-3A-B. 

Over the course of the study, CT assessed lung density was very stable in the control group, as 

reflected in the minimal (± 2%) percent change from baseline, seen in both regions. Silica 

exposure was performed at 14 months and confirmed via a 14.8% and 14.1% increase in mean 

CT lung attenuation in the manually placed and propagated regions, respectively, in the targeted 

right cranial lung lobe of the exposure group. This immediate increase in density was caused by 

fluid deposition in this target region (saline suspension and flush). At subsequent time points, CT 

assessed lung attenuation remained elevated from baseline for exposure animals compared to 

controls, ranging from an increase in 2.2% at 14 and 16 months to 7.1% at 36 months seen in the 

propagated regions. Similarly, manual regions showed an increase in 1.8% at 14 months to 3.6% 

at 51 months.  

For the quantitative assessment of CT based airway measures, the wall area fraction was 

determined by dividing the airway wall area by the outer (total) airway area for each target airway 

branch. Measures acquired at 15 months post exposure (cohort 27 months of age) were compared 

to pre-exposure, baseline measures (cohort 12 months of age) to observe changes over time. Here, 
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evidence of airway wall thickening was observed in the cranial lobe segmental airways (RB1-5 

and RB1-6) in the exposure group, but not in the control group as seen in Figure 8-3C. 

Pathological confirmation of silica deposits with corresponding fibrosis in the upper right 

lung was obtained for subject Sil 3 at 36 months of age and displayed in Figure 8-2. Necropsy 

occurred immediately following the final imaging time point with CT. Prosection of the lung was 

guided by the previously acquired MRI and CT images through three plane viewing and volume 

rendering to gauge correspondence between and within structures.  

 
Figure 8-2: Silica deposition and pathology. (A) Volumetric rendering of the lungs (translucent blue) with 

the corresponding airway tree (peach). The red cylinder within the upper lung indicates the location of the 

volumetric region of interest used for CT attenuation analysis. The corresponding CT coronal-section 

shows the deposition of silica as noted by the increased attenuation in the surrounding area. The apical 

bronchus airway tree is shown to the right with the labeling system used to identify each branch. The black 

arrow shows the site of silica deposition with the bronchoscope corresponding to the black arrow in the 

coronal image. (B) Pathology obtained after the final time point showing locally extensive remodeling 

accentuated by fibrosis (arrows) and inflammation (HE stain, 2x) (top). Same section examined with 

polarized light noting white (refractive) silica granules (arrows) admixed with pulmonary remodeling 

(bottom). 
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Figure 8-3: Quantitative trends. Percent change from baseline (at 12 months of age) of lung attenuation 

measured with (A) automatically propagated regions of interest from baseline and (B) manual placements 

for exposure and control animals. Due to the nature of CT in the lungs (negative Hounsfield Unit values), 

an increase in attenuation results in a negative percent change. Values were normalized to the mean whole 

lung intensity. (C) Change in wall area fraction in the peripheral airways of the apical bronchus tree. 

Change is determined as the difference between wall area fraction measured at 15 months post exposure 

(27 months of age) versus those acquired at baseline (12 months of age). 

 



83 
 

8.4 Discussion 

We have presented an exposure animal model with crystalline silica showing quantitative 

measures of lung structural changes in the parenchyma and airways. We chose three exposure 

animals and three control animals for comparison with progression of disease seen in the 

exposure animals when compared with the control animals. The structural reporting mechanism 

aided in the comparison of findings between modalities and assisted in distinguishing transient 

from persistent structural changes within a modality, primarily reported upon in CHAPTER 4: 

STRUCTURED REPORTING. However, the structured reports did not capture the severity of a 

finding in a particular lobe and an approximately equal number of findings were reported in the 

right cranial lobes of exposure and control animals. Characterization was additionally aided by 

quantitative CT measures in the lung, showing density increase in the parenchyma and airway 

remodeling. Our findings support further exploration of these quantitative measures in a larger 

cohort to validate these biomarkers for the assessment of silicosis progression in pigs. 

An advantage of CT data acquisition over MRI in this study was the ability to 

quantitatively assess the lung for airway wall structural changes over time using software 

developed for human CT pulmonary assessment. We demonstrated the use of software developed 

for human CT pulmonary assessment. These techniques have been established for 

characterization in human cohorts for comparison across subjects exhibiting chronic obstructive 

pulmonary disease (COPD) and other lung diseases [162, 163]. In addition to airway analysis, we 

demonstrated the utility of our longitudinal feature extraction extension for assessing density 

changes over time. A comparison was performed between manually placed regions versus regions 

automatically propagated from the first time point. Similar trends were observed with both 

regions. While subtle, this quantitative assessment reflects a progressive increase in lung density 

in the exposed region of the lung compared to the highly stable mean lung density in the control 

cohort. Greater standard deviations were observed among propagated regions compared to 

manual regions. During manual placement, the same voxel sized region was used during analysis 

across all lungs showing varying volumes depending on voxel size; however, propagated regions 

showed a more consistent volume with minor deviations depending on the amount of scaling, 

rotation, and translation included in the transform. This presented a greater opportunity for 

inclusion of voxels containing vessels and airway walls which would account for a larger 

standard deviation.  

To capture and track longitudinal changes in pulmonary structure due to disease 

development using medical imaging, we selected to expose a subset of TP53R167H/+ pigs to 
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crystalline silica. Silica exposure was selected for this study due to the progressive nature of 

silicosis formation that would provide an ideal model in which to compare longitudinal chest 

imaging techniques. In addition, crystalline silica is a carcinogen associated with lung cancer 

based on the study of occupational exposure [164-166] and supported by work in animals [156, 

157]. Necropsy of one of the silica exposed pigs confirmed persistent silica deposition in the lung 

and localized fibrosis development; however, after 51 months of age, minimal changes were 

observed towards development of a lung cancer. This lack of tumor development suggests earlier 

exposure, prior to 14 months of age, and/or a more aggressive exposure delivered in one or 

multiple time points.  
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CHAPTER 9:  RADIATION EXPOSURE MODEL 

9.1 Introduction 

Sarcomas have proved difficult with respect to the development of effective therapies due 

to their rare occurrence, minimal access to human samples, and limited adequate mouse models 

and in-vivo models. Spontaneous development of osteosarcoma was observed in the 

TP53R176H/R176H model described in CHAPTER 7: LI-FRAUMENI; however, the propensity for 

development in the cranium limits the utility of this model. Exposure to ionizing radiation is well 

known to increase the risk of cancer development with radiation-induced sarcomas seen in breast 

cancer patients and hereditary retinoblastoma patients treated with radiation therapy [167, 168]. 

In addition, Li-Fraumeni patients treated with radiation therapy have developed secondary 

cancers, including bone and soft tissue sarcomas, within a previous radiation field [169] with 

similar results seen in equivalent mouse models [170, 171]. Additionally, the most common site 

of metastasis seen with osteosarcoma patients is in the lung [172, 173], a site of interest for our 

group. With a known predisposition to sarcoma development, this chapter presents the 

development and characterization of TP53R167H/+ and TP53R167H/R167H animals exposed to radiation 

aimed at accelerating and directing the development of sarcoma in the long bones. 

9.2 Materials and methods 

Model generation: A cohort of 4 animals (n = 2: TP53R176H/R176H, n = 2: TP53R176H/+) was 

irradiated to encourage osteosarcoma development in a peripheral location. A 3 cm x 3 cm 

window on the left hind leg corresponding to the tibia situated approximately 3 cm above the 

hock joint was chosen for targeted radiation exposure. The corresponding region on the right leg, 

not exposed to radiation, served as a contralateral control. A protocol delivering a cumulative 

maximum of 30 Gy at the skin surface was delivered through six 5 Gy fractions to the 9 cm2 

region at 200 kVp over a two-week time period. The left leg of the animal was propped up on an 

aluminum mounting frame to ensure consistent positioning and stability at each fraction. A 3 mm 

thick lead shielding isolating the radiation region of interest was placed on the leg and taped in 

place to limit any movement of the shield due to breathing of the animal. The calculated amount 

of total dose delivered to the bone is displayed in Table 9-1. All procedures were performed 

under anesthesia and approved by the Institutional Animal Care and Use Committees (IACUC) of 

the University of Iowa and Exemplar Genetics.   
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Table 9-1: Delivered radiation dose. The incident dose delivered to the bone in subjects Sar 1-4 given a 

cumulative 30 Gy at the skin surface through a 3 x 3 cm2 field at 200 kVp with a 1 mm copper filter. 

Calculations were based on the TG-61 protocol with percentage depth dose (Pdd) values from BJR-25. 

 Proximal edge Distal edge 

Subject 
Depth 

[cm] 

Pdd 

[%] 

Incident Dose [Gy] Depth 

[cm] 

Pdd 

[%] 

Incident Dose [Gy] 

Sar 1 1.9 79.2 58.4 2.3 74.6 55.0 

Sar 2 1.7 81.5 60.0 2.1 79.1 58.3 

Sar 3 2.0 78.0 57.5 2.3 74.6 55.0 

Sar 4 2.4 73.4 54.1 2.8 68.8 50.7 

Average   57.5 ± 2.5   54.7 ± 3.1 

 

Table 9-2: CT imaging protocols for radiation exposure model. Parameters for CT imaging developed for 

a SOMATOM Force dual-source scanner. Chest protocols and whole-body imaging protocols were 

developed for assessment of metastasis and targeted hind leg protocols for assessment of radiation 

exposure area. Additional multi-planar reconstructions (MPR) were performed for the hind legs at slice 

thicknesses of 0.2 mm for quantitative imaging analysis. 

 Chest Whole-body Hind legs 

Scanner Force Force Force Force 

Scan Type Helical (SE) Helical (SE) Helical (SE) Helical (SE) 

Rotation time (s) 0.5 0.5 0.5 1.0 

Det. Configuration 192 x 0.6 192 x 0.6 192 x 0.6 192 x 0.6 

Eff. mAs 220 130 380 30 

kV 120 120 120 120 

Care Dose 4D OFF OFF OFF OFF 

Pitch 1 1 1 0.3 

Recon. Kernel Qr40 Qr40 Br40 Ur77u, MPR 

Iterative 

reconstruction 
3 3 3 3 

Slice Thickness 

(mm) 
3, 0.75 3, 0.75 3, 0.75 0.2 

Breath hold 

(cmH2O) 
20 5 20 None 

 

Image acquisition: A cohort of 4 animals, 2 heterozygotes and 2 homozygotes, were 

imaged for disease characterization with protocols modeled after the image acquisition methods 

described in CHAPTER 3: LONGITUDINAL MEDICAL IMAGE ACQUISITION. Focus was 

placed on imaging the hind legs for disease development with whole-body screening of disease. 

Radiation exposure was non-targeted resulting in the desire for imaging with both CT and MRI 

for bone and soft tissue sarcoma screening.  

Whole-body CT scans were obtained with a 128-multidetector dual-source scanner 

(SOMATOM Force, Siemens Healthcare, Forchheim, Germany) to assess for potential disease 

throughout the body, including metastatic disease. Additional inspiratory and expiratory chest 

scans were acquired to assess for metastatic disease in the lungs. Scans were acquired at an 
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inspiratory breath-hold of 20 cmH2O and expiratory breath-hold of 5 cmH2O following 2 minutes 

of pulmonary recruitment at an equivalent PEEP. Reconstructions were performed with a 

standard body kernel at slice thicknesses of 3 mm and 0.75 mm.  

Following whole-body imaging, animals were positioned prone with hind legs extended 

in parallel. Targeted ultra-high resolution CT scans of the hind legs, corresponding to the region 

of radiation exposure, were obtained at each time point to evaluate the exposure region and 

contralateral control region. Multi-planar reconstructions were performed to align left and right 

tibias to the center of each image with an ultra-high resolution kernel at slice thickness of 0.2 

mm. Similarly, targeted hind leg MRI scans were acquired with a 3-Tesla MRI system (TIM Trio 

3T, Siemens Healthcare, Forchheim, Germany) with standard surface coils. High resolution T2 

3D SPACE scans were acquired with 0.84 mm isotropic voxels and axial and coronal T1 scans 

were obtained with 3 mm slice thickness and 0.53 mm x 0.53 mm and 0.84 mm x 0.84 mm in-

plane resolutions, respectively. Parameters for all acquired images are displayed in Table 9-2 and 

Table 9-3. 

Table 9-3: MRI protocols for radiation exposure model. 3-Tesla TIM Trio MRI scanner parameters used to 

acquire targeted hind leg and mouth lesion images 

 Hind leg Neck 

 3D 

SPACE 
T1 (Axial) 

T1 

(Coronal) 

T1 

(Coronal) 

T2 

(Coronal) 

STIR 

(Sagittal) 

Scanning 

sequence 
Spin echo Spin echo Spin echo Spin echo Spin echo 

Spin 

echo/Inversion 

recovery 

Acquisition 

type 
3D 2D 2D 2D 2D 2D 

Repetition time 

(msec) 
1630 550 653 418 5590 4960 

Echo time 

(msec) 
116 10 12 9.2 100 40 

Flip angle (o) 120 150 90 148 143 160 

Echo train 

length 
137 3 1 3 13 7 

Slice thickness 

(mm) 
0.8 3 2.8 4 4 4 

In-plane 

resolution 

(mm) 

0.84 x 0.84 0.53 x 0.53 0.84 x 0.84 1.02 x 1.02 0.81 x 0.81 0.81 x 0.81 

Acquisition 

matrix 
320 x 161 512 x 192 320 x 224 256 x 256 320 x 240 320 x 224 

Number of 

Slices 
160 45 25 24 24 22 

Approx. Scan 

time (min:sec) 
12:25 4:45 4:20 1:15 3:20 2:45 

Respiratory 

management 
None None None None None None 
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Structured reports: Structured reports were used to provide consistent and complete 

visual interpretation of the acquired scans. Each structured report included the assessment of the 

diagnostic quality of the scan and targeted anatomic structures of interest. Structures of interest 

included the skeletal system, specifically the hind legs, lungs, and brain. The RECIST diameter, 

imaging characteristics, and anatomic location were identified for each detected lesion. All scans 

were read by a radiologist and disease indications and development were recorded.  

Registration: Multi-level registration was performed to align detected lesions in acquired 

longitudinal datasets. CT scans were registered to the second CT acquisition to account for 

increased growth rate observed in the young age of the animals at the first time point. Acquired 

MRI images were registered to CT scans obtained at the equivalent time point.  

Feature extraction: Quantitative CT features focused on assessment of identified bone 

lesions and the exposure region in the hind leg compared to the control region. Features were 

extracted from bone lesions to compare their density and heterogeneity across datasets. For 

assessment of changes in the exposure versus control long bones, measurements were obtained 

over a defined region in the CT images. Cortical and trabecular bone were automatically 

segmented from the images to create individual masks for analysis. Quantitative measures of 

cortical bone material density (BMD) and thickness and trabecular BMD were obtained in each 

axial cross-section of the image in collaboration with Drs. Punam Saha and Dakai Jin [174], 

resulting in values distributed by slice number. Difference between the control leg and the 

exposure leg were used for analysis.  
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Table 9-4: Radiation exposure model imaging time points. The imaging time points acquired for 

characterization of the radiation exposure model. An X indicates imaging occurred, R indicates radiation 

exposure occurred immediately followed by imaging, a capital N indicates imaging occurring followed by 

necropsy within 24 hours, and a lowercase n indicates necropsy occurred without any imaging. Purple 

indicates that both CT and MRI were acquired. 

  2014 2015 2016 Necropsy 

Diagnosis Model Subject J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D 

T
P

5
3

M
/M

 +
 

ra
d

ia
ti

o
n
 

Sarhom 1      B      R n                  Lymphoma 

Sarhom 2      B      R  X    X  N           Osteosarcoma 

T
P

5
3

M
/+

 +
 

ra
d

ia
ti

o
n

 

Sarhet 3      B      R  X    X              

Sarhet 4     B       R  X    X              

 

 
Figure 9-1: Targeted hind legs protocols. Protocols acquired in the hind leg from (A) CT and MRI (B) T1 

coronal, (C) T1 axial, and (D) T2 SPACE.  
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9.3 Results 

Sarhom 1-2 and Sarhet 3-4 were imaged with CT and MRI for a range of 1 to 4 time points 

as shown in Table 9-4. Following trends seen in CHAPTER 7: LI-FRAUMENI for TP53 animals, 

disease was detected in both homozygote animals with minimal indicators detected in both 

heterozygote animals. Heterozygotes continue to be monitored for clinical signs. Upon imaging 

of subject Sarhom 1, early indications of lymphoma were detected with pathological confirmation 

shortly after imaging. Three imaging time points were acquired for the remaining animals with 

example images displayed in Figure 9-1. A final, fourth time point was acquired for subject 

Sarhom 2 upon clinical indications of an aggressively growing tumor in the mouth. Targeted scans 

of the lesion were additionally acquired in MRI for soft tissue characterization with parameters 

listed in Table 9-3. 

Table 9-5: Structured reporting lesion tracking and characterization. Lesions identified in subject Sar 2 

characterized by the RECIST diameter, largest perpendicular diameter, and imaging characteristic defined 

in comparison to the intensity of bone in the image. 

Lesion name 
Time point 

detected 

RECIST 

diameter [mm] 

Perpendicular 

diameter [mm] 

Imaging 

characteristic 

(relative to bone) 

Right metatarsal 

1 5.3 3.4 Heterogeneous 

2 14.1 4.6 Heterogeneous 

3 6.4 4.2 Heterogeneous 

4 11.3 6.5 Heterogeneous 

Proximal left 

femur 

2 7.9 6.3 Hyper-intense 

3 14.0 9.5 Heterogeneous 

4 14.2 11.9 Heterogeneous 

Distal left femur 
2 4.9 4.7 Isointense 

3 5.5 4.5 Hypo-intense 

Right humerus 
3 19.4 7.0 Heterogeneous 

4 19.1 11.3 Heterogeneous 

Mouth lesion 4 74.4 36.4 Hypo-intense 

 

Structured reports led the assessment of disease in each set of scans. Enlarged lymph 

nodes (>3 cm) and a mildly enlarged liver and spleen were noted in subject Sarhom 1 as early 

indicators of lymphoma. Several bone lesions were detected in subject Sarhom 2 throughout the 

limbs beginning in the first time point listed in Table 9-5. Only one lesion, located in a right 

metatarsal, was present in the first imaging time point showing a RECIST of 5.3 mm. Growth of 

this lesion was shown to be variable with RECIST diameters of 14.1 mm, 6.4 mm, and 11.3 mm 

at time points 2, 3, and 4, respectively, with a heterogenous intensity pattern seen at all 4 time 

points. Two lesions were identified in the left femur. The distal lesion was initially noted as 

isointense with respect to bone and had a RECIST of 4.9 mm. The following imaging time point 
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showed minimal change in RECIST (5.5 mm); however, the intensity was noted as hypo-intense 

with respect to bone with no lesion noted in the final time point. The proximal femur lesion 

appeared in the second time point with a RECIST of 7.9 mm. Minimal growth was apparent 

between the last two time points with RECIST measurements of 14.0 mm and 14.2 mm, 

respectively; however, progression was seen from a solid, spherical, hyper-intense lesion at the 

second time point to increasing heterogeneity in subsequent time points. A final bone lesion was 

noted in the right humerus showing the development of a 19.4 mm lesion between the second and 

third time points. Growth showed relative stability according to a RECIST of 19.1 mm at the last 

time points. Lastly, a mouth lesion was noted in the final time point showing a large mass with a 

RECIST of 74.4 mm extending from the right mandible. Imaging characteristics showed a 

primarily soft-tissue lesions with a well-defined border and a bony matrix as seen in Figure 9-2C. 

No relevant disease findings were noted in subjects Sarhet3 or Sarhet 4 or in the radiation exposure 

region of all animals.  

To quantitatively assess early changes in the bone exposed to radiation, regions of 

interest were placed on the hind tibias spanning the length of the bone from the growth plate of 

distal tibia to the entrance of the vessel foramen into the marrow. Cortical and trabecular bone 

were successfully segmented and bone density measures and cortical bone thickness were 

obtained. Results were subdivided into three regions within the region – the distal extremity, the 

distal shaft, and the middle shaft – with exposure directed at the distal shaft. Minimal differences 

were seen between the control and exposure tibia bones regarding cortical bone thickness and 

trabecular BMD. Differences were seen between cortical BMD measurements with a greater 

density seen in the exposure tibia (left) overall as seen in Figure 9-3. Subject Sarhom 2 showed the 

largest differences at the second time point, six weeks post exposure protocol. Elevated 

differences remained in the distal extremity and distal shaft through the remaining time points 

with compared to the first time point. Subject Sarhet 3 showed increasing differences in the 

exposure leg throughout the region over time. Subject Sarhet 4 showed positive differences 

initially, prior to exposure, with smaller negative differences in consecutive time points. Overall, 

no clear trends were observed indicating the presence of tumor development.  
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Figure 9-2: Pathology and other lesions. (A) Scarring process (arrows) seen at the radiated skin site 

through increased connective tissue (HE stain, 2x). (B) Right humerus lesion (orange circle) in CT showing 

increased density with corresponding pathology showing deposition of trabecular bone (HE stain, 2x). (C) 

Mouth lesion, highlighted by the orange circle, with no indications seen in time point 3 with an aggressive 

lesion seen in time point 4 on CT, MRI T2, and MRI T1. Rendering is seen in the head showing the location 

of the lesion (bottom right) with pathology displaying inflammation and necrosis with bony proliferation 

(top right). 
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Figure 9-3: Cortical bone material density (BMD) analysis of tibia. Cortical BMD differences between the 

control (right) tibia and the exposure (left) tibia at each time point by bone location (distal extremity, distal 

shaft and middle shaft). A negative difference indicates that the radiation-exposed tibia (left) has a greater 

density than the control tibia (right). 

 

Multi-level registration across all 4 time points of Sarhom 2 was focused on the lesion 

identified in the proximal left femur to illustrate its growth and change over time, seen in Figure 

9-4. Due to large differences in positioning at the hind limbs during supine positioning, manual 

initialization was required following by one level of registration focused on a region of interest 

around the femur. Independent masks were created identifying regions within each lesion for 

quantitative feature extraction. Average intensity and standard deviation values matched visual 

trends with decreasing mean intensity and increasing heterogeneity over time. As seen in Table 

9-6, the mean intensity decreased at each time point while the standard deviation increased over 

time. Time point 2 saw an average intensity of 772.76 (± 173.61) HU with 676.18 (± 206.02) HU 

and 516.18 (± 235.83) HU seen in time point 3 and 4, respectively. 

Table 9-6: Automatic lesion tracking and characterization. Quantitative features extracted from the left 

proximal femur lesion. The RECIST measurement was obtained following imaging registration to align the 

lesion across time points. Quantitative features were acquired from individually placed regions across 

datasets. 

Time point RECIST Minimum Maximum Mean Standard deviation 

2 9.78 173 1109 772.76 173.61 

3 14.1 -116 1380 676.18 206.02 

4 14.2 -91 1580 516.18 235.82 
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Figure 9-4: Proximal femur lesion. (A) The post-registration CT of the proximal femur lesion in the 

coronal and axial planes showing progression from no lesion (time point 1) to a heterogeneous lesion (time 

point 4) with (B) corresponding pathology obtained following time point 4 showing a lytic region (arrow) 

at the edge of the bone (HE stain, 2x). 

 

Necropsy was performed on subject Sarhom 2 immediately following the final imaging 

time point. Acquired images led targeted tissue collection and histopathology was acquired for 

the radiation exposure region and lesions in the femur, humerus, and mouth and displayed in 

Figure 9-2 and Figure 9-4. Increased connective tissue, denoting scarring, was seen in the skin of 

the radiation exposure region compared to the skin in the control region. The femur contained a 

lytic lesion; represented in the imaging and quantitative characteristics as a decreasing mean 

intensity and increasing heterogeneity. The humerus showed an increased density and deposition 

of trabecular bone as indicated by the heterogenous intensity pattern seen in the internal portion 

of the shaft. The mouth lesion was identified as an aggressive lesion composed of inflamed and 

necrotic tissue with bony proliferations.  

9.4 Discussion 

 We have presented the development and characterization of a heterozygote and 

homozygote Li-Fraumeni animal model with additional radiation exposure to the hind leg aimed 

at targeted sarcoma development. We chose two heterozygotes and two homozygotes to build 

upon the tumor susceptible genetic background. Whole-body imaging and targeted lung imaging 

was performed with CT with additional targeted imaging protocols designed for soft tissue and 

bone characterization in the hind legs with CT and MRI. Several bone lesions were detected in a 

single homozygote subject. By assessment of RECIST, most lesions showed growth over time; 

however, the lesion in the right metatarsal did not, which was primarily noted due to differences 

in positioning of the hind legs further illustrating the limitations of the RECIST measurement. 

Quantitative CT methods were additionally developed for characterization showing minimal 

changes in cortical and trabecular bone between control and exposure legs. Our findings suggest 
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the need for continued monitoring of heterozygote animals with expectation of tumor 

development in the future. 

 Our developed methods were essential in characterizing this model. Whole-body, 

longitudinal screening was important for detection of peripheral bone lesions and tracking their 

progression together with structured reporting. Most lesions progressed from a bright, isointense 

lesion to a heterogenous intensity pattern as seen in the right metatarsal and left proximal femur 

suggesting progression of disease which cannot be identified by RECIST alone. A lesion was also 

noted in the distal femur; however, it progressed from isointense to bone to hypo-intense to 

resolution throughout imaging. The detected mouth lesion was characterized with both CT and 

MRI showing various levels of soft tissue and bone involvement. Previous studies have shown 

that MRI is superior to CT in evaluation of bone tumors due to the ability to effectively delineate 

the margins of the tumors with corresponding soft tissue involvement [175, 176]. In general, MRI 

imaging of the bone has challenges due to the short tissue relaxation times; however, protocols 

have been developed to overcome these challenges, including the development of ultra-short echo 

time (UTE) imaging [177] and fat suppression [178] which may aid in further characterization of 

detected lesions. MRI imaging was not acquired for any other lesions due to the limited field of 

view in the targeted acquisitions. 

 In addition, our registration algorithm was used for alignment of the peripheral femur 

lesion. For this model, the second time point image was chosen as the fixed image to minimize 

growth changes between the fixed image and all other images. Due to differences in positioning 

of the hind limbs during whole-body screening, significant manual alignment was required for 

initialization. While specialized, prone positioning was implemented for targeted hind leg scans, 

the field of view was isolated specifically to the tibia and did not extend up to the femur. 

Extending this field of view may present further opportunity for consistent positioning along the 

skeleton. We also demonstrated quantitative feature extraction on the targeted radiation region 

and the peripheral bone lesion. To account for growth in the long bones, we developed a 

normalization schema by isolating the same region of bone using physical indicators and 

normalizing measurements to the corresponding slice. This aided in comparison across exposure 

and control bones and across subjects. Quantitative analysis of the proximal femur lesion further 

aided characterization beyond notations in the structured reports. While a consistent RECIST 

measurement was obtained in the last two time points, quantitative measures showed a decreasing 

intensity with increasing heterogeneity suggesting progression of the lytic process.  
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Lastly, there are limitations associated with this model. Subject Sarhom1 developed 

lymphoma shortly after radiation exposure. This animal was not replaced in the study due to the 

lack of available substitutions and scheduling limitations. Of the remaining animals, tumor 

development did not occur in the region of the limb exposed to radiation to date (20 months post 

exposure); however, tumors were detected in other areas of the body in subject Sarhom 2. Other 

large animal studies in dogs have shown similar latency periods ranging from 1-5 years post 

radiation exposure [179, 180]. We expected an expedited tumor formation in these models due to 

the TP53 mutant background as seen with the increased rate of sarcomas in Li-Fraumeni patients 

with radiation treatment [169]. External radiation exposure is advantageous as a carcinogen, over 

other potential methods, such as chemical exposure or internal radiation sources, as the animal 

itself is not hazardous post-exposure, eliminating the need for special containment of the animal. 

We used a conservative level of radiation exposure, adhering to skin limitation guidelines for 

humans, to avoid desquamation of the skin. While pathology did note some scarring at the 

radiation exposure site, no evidence of radiation damage to the skin was observed in these 

animals and a higher dose may be well tolerated in future studies. While no solid tumor was 

present in the exposure region, radiation may have triggered the formation of cancer-type cells 

that circulated in the blood and initiated the process for those lesions identified; similar to the 

metastatic process [181]. These findings suggest the potential utility of a more aggressive 

radiation exposure and/or exposure at an earlier age.   
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CHAPTER 10:  CONDITIONALLY ACTIVATED KRAS MODEL 

10.1 Introduction 

Normal functioning KRAS, a member of the RAS protein family, is a primary regulator of 

cell division, including promoting cell survival, cell growth, cell cycle progression, and 

transcription [182]. In contrast, the p53 protein, encoded by the TP53 gene, functions in tumor 

suppression by inhibiting angiogenesis and monitoring growth, DNA repair, and signaling for 

apoptosis. The specific combination of mutations in both TP53 and KRAS are well established 

among human cancers and widely used in the development of mice models, including lung and 

pancreatic cancer [148, 183-187]. Among lung cancers, specifically adenocarcinoma, p53 

mutations are seen in 50-70% of cases and KRAS mutations seen in 30-35% [188, 189]. For 

pancreatic cancer, KRAS mutations are observed in over 90% of tumors [190].  

With the aim of enhancing temporal and spatial control of cancer development, a dual-

targeted KRASG12D/+/TP53R167H/+ model was created by Exemplar Genetics. Animals were 

confirmed to express one mutant allele of the TP53 gene in all tissues in conjunction with Cre-

inducible mutant KRAS. A cohort of animals (n=3) was designated for characterization with 

targeting in the lungs and pancreas. Activation of the KRAS mutation in the lungs occurred via 

bronchoscope injection of the Cre virus into the upper right lung (n=2) and the pancreas via direct 

injection following surgery (n=2). All procedures were performed under anesthesia and approved 

by the Institutional Animal Care and Use Committees (IACUC) of the University of Iowa and 

Exemplar Genetics.  

This chapter presents the characterization of this model using the methods described in 

CHAPTER 3 – CHAPTER 6. Focus was placed on identifying tumor development in the lungs 

and pancreas with whole-body screening for metastasis.  

10.2 Materials and methods 

Image acquisition: A cohort of 3 animals were imaged for disease characterization 

modeled after the image acquisition methods described in CHAPTER 3: LONGITUDINAL 

MEDICAL IMAGE ACQUISITION. Focus was placed on chest and pancreas imaging with low 

dose whole-body screening. CT scans were obtained with a 128-multidetector dual-source 

scanner (SOMATOM Force, Siemens Healthcare, Forchheim, Germany) to assess for potential 
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disease, including metastatic disease. Inspiratory and expiratory chest scans were acquired to 

assess for disease development in the lungs. Scans were acquired at an inspiratory breath-hold of 

20 cmH2O and expiratory breath-hold of 5 cmH2O following 2 minutes of pulmonary recruitment 

at an equivalent PEEP. A contrast enhanced pancreas protocol modeled after standard clinical 

practice, was developed to acquire abdominal scans following injection of contrast (50% 

saline/50% contrast) at 5cc/sec. Arterial scans were automatically triggered at a value of 100 HU 

detected in a region monitored in the abdominal aorta beginning 5 seconds post injection. A 

pancreatic phase scan was then acquired at 40 seconds post contrast and a final scan was obtained 

70 seconds post contrast for portal venous phase assessment. Reconstructions were performed 

with a standard quantitative kernel with level 3 iterative reconstruction at slice thicknesses of 3 

mm and 1 mm. A final, low-dose, whole-body scan was acquired to assess for metastatic disease 

and reconstructed with a standard quantitative kernel with level 5 iterative reconstruction at slice 

thickness of 3 mm. Parameters for all images are listed in Table 10-1. 

Table 10-1: CT imaging protocols for KRAS activation model. Parameters for CT imaging developed for a 

SOMATOM Force dual-source scanner.  

 Chest Whole-body Contrast-enhanced 

Scanner Force Force Force Force Force Force 

Scan Type 
Helical 

(SE) 

Helical 

(SE) 
Helical (SE) 

Helical 

(DE) 

Helical 

(SE) 
 

Rotation time 

(s) 
      

Det. 

Configuration 
192 x 0.6 192 x 0.6 192 x 0.6 192 x 0.6 192 x 0.6 192 x 0.6 

Eff. mAs 

(reference) 
200 200 20 200 200 200 

kV (reference) 120 120 100 120 120 120 

Care Dose 4D ON ON ON ON ON ON 

Care kV OFF OFF ON OFF OFF OFF 

Pitch 1 1 1 1 1 1 

Recon. Kernel Qr40 Qr40 Qr40 Qr40 Qr40 Qr40 

Iterative 

reconstruction 
3 3 5 3 3 3 

Slice Thickness 

(mm) 
1 1 3 1 1 1 

Breath hold 

(cmH2O) 
20 5 20 20 20 20 

Contrast delay 

(seconds) 
None None None 20 40 70 

 

Structured reports: Structured reports were used to provide consistent and complete 

visual interpretation of the acquired scans. Each structured report included the assessment of the 

diagnostic quality of the scan and targeted anatomic structures of interest. The anatomic 
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structures of interest included the lungs, pancreas, and the liver. The RECIST diameter, imaging 

characteristics, and anatomic location were identified for each detected lesion. All scans were 

read by a radiologist and disease indicators and development across time points was recorded.  

Registration and feature extraction: Multi-level registration was performed to align 

longitudinal CT datasets of the lungs. Several regions of interest were identified in the lung 

corresponding to disease, such as nodules and ground glass opacities, and normal lung and 

automatically identified in all subsequent images. Acquired measures were normalized to the 

mean intensity of the entire lung with a value greater than 1 indicating less dense tissue and less 

than 1 indicating increased density relative to the entire lung. Whole lung masks and mean 

intensity were acquired via the methods described in CHAPTER 5: MULTI-LEVEL 

REGISTRATION. Trends were observed to identify progression of disease over time. For the 

pancreas, contrast enhancement patterns were quantitatively identified with a region of interest 

placed in the tail of the pancreas in the arterial phase of the image. The corresponding region was 

then automatically propagated to the pancreatic and portal venous phase images and features were 

extracted. Trends were observed to determine irregular contrast uptake patterns. 

 Table 10-2: KRAS activation model imaging time points. The imaging time points acquired for 

characterization of the radiation exposure model. An X indicates imaging occurred and e indicates KRAS 

activation occurred. Blue indicates that only CT was acquired. 

  2014 2015 2016 2017 Necropsy 

Diagnosis Model Subject J A S O N D J-D J-J J A S O N D J F M A 

TP53M/+ + KRASM/+ 

(Lung) 
Ras 1  B        e   X   X    

TP53M/+ + KRASM/+ 

(Pancreas) 
Ras 2  B        e   X   X    

TP53M/+ + KRASM/+ 

(Lung/Pancreas) 
Ras 3  B        e   X   X    

  

 

 
Figure 10-1: Contrast enhanced CT protocol. Abdominal scans acquired 20 seconds post contrast in the 

arterial phase, 40 seconds post contrast in the pancreas phase, and 70 seconds post contrast in the venous 

phase. The tail of the pancreas is identified by the orange circle in all images. 
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Figure 10-2: Ground glass opacities. (A) Development of ground glass opacities observed via CT, 

indicated by the orange circle, in the lungs of subject Ras 1. (B) Progression of ground glass opacities 

throughout the right lung of subject Ras 3. 

10.3 Results  

 All imaging protocols were acquired for subjects Ras 1-3 for a total of two time points 

listed in Table 10-2. Imaging occurred 3 and 6 months following exposure corresponding to 26 

and 29 months of age. Imaging was successfully performed on all animals with example contrast 

enhanced sequence seen in Figure 10-1 and example lung images seen in Figure 10-2. Whole-

body, low-dose protocols were successfully obtained with a CT dose index (CTDI) of 0.84 (± 

0.26) mGy and were useful in further identifying structures that continued outside of the chest 

and abdominal field of view, specifically in the abdomen.  

 Structured reports led the qualitative assessment of disease in all three animals. A single 

nodule was noted along the fissure between the right middle and upper lobe in subject Raslung 1 at 

the first imaging time point. Subsequent imaging showed nodule stability, according to RECIST 

assessment, with increased ground glass opacities surrounding the nodule. Chronic right lung 
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disease was noted in subject Raspan 2 characterized by consolidation and bronchiectasis seen in 

both time points with no pancreatic abnormalities observed. Lastly, subject Raslung/pan 3 showed 

ground glass airspace disease in the right lung with predominance in the upper lobes noted in both 

time points. Small nodules (< 3mm) in the right upper lobe and left upper lobe were detected in 

the first time point; however, were resolved by the second time point. In the abdomen, a 

hypodense region was noted in the pancreas at both time points and free fluid was additionally 

observed in the mesentery. 

Quantitative assessment of contrast enhancement showed increasing uptake of contrast 

throughout all three phases, except for subject Raslung/pan 3 in the first imaging time point where a 

quick washout of contrast was observed in the portal venous phase image as seen in Figure 10-3. 

 
Figure 10-3: Quantitative contrast enhancement patterns. Measures obtained from the pancreas region of 

interest showing average intensity values where each dot represents an image taken at a specific contrast 

delay corresponding to the arterial, pancreatic, and venous phase.  

 

Quantitative features were extracted from the right and left lung in subjects that received 

exposure in the lungs, displayed in Figure 10-4. Subject Raslung 1 showed quantitative progression 

of a ground glass opacity in the upper right lung. A region of interest was placed in the second 

time point corresponding to the opacity and automatically identified in the first time point. 

Normalized mean intensity showed an increase in density over time with values of 0.98 and 0.92 

in the first and second time point, respectively. In comparison, three comparative regions were 

placed in the left lung representing normal tissue and showed minimal deviation from the average 

whole lung intensity at normalized values of 1.02 (± 0.02) and 1.03 (± 0.005) for time point 1 and 

2, respectively. 
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Subject Raslung/pan 3 showed more diffuse ground glass opacities, noted as airspace 

disease, in the right lung. Four regions were placed in the right lung (two upper lung, two lower 

lung) and two regions in the left lung for comparison. Both right lung regions showed an 

increased density at the first time point with normalized values of 0.89 (± 0.02) and 0.96 (± 0.04) 

in the upper and lower regions, respectively. Progressive increased density was observed at the 

second time point with corresponding normalized values of 0.77 (± 0.03) and 0.92 (± 0.02). 

Additionally, increased density was seen in the upper regions versus the lower regions of the right 

lung with a more increased progression between time points observed in the upper regions. In 

comparison, left lung regions showed a lower density at both time points compared to the whole 

lung with values of 1.05 (± 0.03) and 1.09 (± 0.04) for time point 1 and 2, respectively. Similar 

measures were obtained from subject Het 3 (27 months of age), described in CHAPTER 8: 

CRYSTALLINE SILICA EXPOSURE MODEL, for comparative measures. Results showed 

minimal differences between values obtained from three regions in the right lung and three 

regions in the left lung as seen in Figure 10-4 with normalized values of 1.03 (± 0.005) and 1.02 

(± 0.01), respectively.  

 
Figure 10-4: Quantitative lung measures. Measures obtained from regions placed throughout the lung of 

subjects Ras 1 and Ras 2. For subject Ras 1, the right lung (RL) measures were obtained from one region 

corresponding to the noted ground glass opacities (GGO) compared to three regions placed in the left lung 

(LL). For subject Ras 2, four regions were placed in the RL (two upper and two lower) and two regions 

were placed in the LL. For comparison, similar measures were obtained from a control subject showing no 

lung disease indicators in the RL and LL. All measures were normalized to the mean intensity value 

obtained from the entire lung. 
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10.4 Discussion 

 We reported on the non-invasive characterization of an animal model with dual-targeted 

mutations associated with TP53 and KRAS. A total of three animals were used such that exposure 

occurred in the lungs, pancreas, and both organs. The animal without targeted organ specific 

activation of the KRAS mutation was used as a control. Unfortunately, chronic lung disease was 

detected in subject Raspan 2, potentially due to post-surgical aspiration, limiting its utility as a 

control for the lung-activated models; rather, an animal from the Li-Fraumeni cohort, described in 

CHAPTER 8: CRYSTALLINE SILICA EXPOSURE MODEL at an age matched time point, was 

used as a non-lung exposure control for quantitative comparison. 

 CT was chosen as the imaging modality of choice due to its ability to acquire fast, whole-

body images, and current clinical standard in assessing lung and pancreatic cancers. Targeted 

protocols were developed for specific organ assessment. Lung protocols were similar to those 

used in CHAPTER 9: RADIATION EXPOSURE MODEL for metastatic assessment. CT is also 

the most commonly used modality for pancreatic cancer assessment with a tri-phasic protocol, 

with the pancreatic phase being the most sensitive to pancreatic parenchymal assessment and the 

portal venous phase used for liver assessment [191]. MRI is also highly sensitive to pancreatic 

lesions due to its superior soft tissue contrast resolution and may be included for future 

assessment of detected lesions. Additionally, whole-body screening was performed with low dose 

CT incorporating automatic adjustment of both the tube current and tube voltage for dose 

modulation and iterative reconstruction techniques to achieve an acceptable diagnostic quality 

image with minimal artifacts at such a low dose. These techniques have previously shown 

maintenance of qualitative integrity of acquired images [3-5, 7, 80]. Recent studies by Hammond, 

et. al [192] have also shown comparable quantitative integrity among lung measures extracted 

from images acquired with several low dose techniques, including tube current modulation and 

iterative reconstruction.  

 We also presented the use of quantitative measures for characterization in the pancreas 

and the lungs. Acquired lung images were registered using the multi-level registration algorithm; 

however, the acquisition of targeted scans focused on the lungs with diffuse disease identified 

throughout the organ prevented the need for multiple registration levels. Specific alignment of a 

region within the lungs, i.e. upper right lung, may require the use of multiple levels for better 

alignment even with the acquisition of targeted scans.  
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 Quantitative features were extracted from multiple propagated regions through both time 

points demonstrating an increase in density in the ground glass regions detected in the right lung. 

Structured reports indicated the presence of stable disease in these regions; however, quantitative 

characterization showed progression of increased density in measures. In comparison with an 

animal of approximate matched age (27 months) and similar genetic background (TP53R167H/+) 

with no genetic alteration in KRAS, these results suggest that progression of disease in the right 

lung is resultant from the methods described. However, pathological confirmation is still required 

to determine if this is due to the presence of the KRAS mutation or presence of normal aspirate 

events displaying increased inflammation.  

Similar trends were observed across quantitative measures obtained from contrast 

enhancement through the tail of the pancreas. Subject Raslung/pan 3 showed an abnormal 

enhancement pattern in the first imaging time point. Abdominal indicators of disease were noted 

in this subject including a hypodense region in the pancreas; however, a normal enhancement 

pattern was observed at time point 2. Further monitoring of this cohort may give insight into these 

markers for potential predictors of disease. 

 After two imaging time points (3 and 6 months post activation of the KRAS mutation), no 

overt tumors were identified in the animals; however, several findings were noted for continued 

monitoring in the lungs and the pancreas. Mutant KRAS activation of these animals did not occur 

until approximately 2 years of age due to availability of animals and scheduling. Activation at a 

younger age may increase the temporal control of observed disease. Other pig models exhibiting 

KRAS mutations have been developed with [65] and without inclusion of TP53 mutations [64]. In 

these animals, only tumors of mesenchymal origin have been observed [65]. In comparison, 

mouse models exhibiting a KRAS mutation in conjunction with a TP53 mutation show 

spontaneous development of lung cancer and pancreatic cancer [185, 193]. Continued monitoring 

of this cohort is occurring with the expectation of continued disease progression in the lungs and 

abdomen with tumor formation.  
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CHAPTER 11:  CONCLUSION 

The goals of this research were to effectively characterize porcine disease models using 

clinical imaging systems and post-acquisition processing techniques. We have presented three 

aims to accomplish this goal through the characterization of four disease models targeted for 

cancer development: Li-Fraumeni heterozygote and homozygote base models, crystalline silica 

exposure model, radiation exposure model, and a conditionally activated KRAS mutation model.  

Aim 1: Develop imaging protocols for the characterization of the phenotype to 

genotype relationship in novel porcine disease models. We have shown the ability to 

longitudinally monitor animals for disease screening with CT and MRI. Whole-body protocols 

were acquired on all animals with targeted acquisitions developed corresponding to the specific 

model. These methods provided non-invasive assessment of each animal to guide 

characterization.  

Aim 2: Develop longitudinal post-acquisition image analysis methods for monitoring 

disease progression. We have presented image analysis methods for tracking disease progression. 

Structured reporting was used to provide consistent and systematic qualitative interpretation of 

acquired datasets. Multi-level registration was shown to provide alignment of anatomies of 

interest in longitudinal datasets. Lastly, we developed a tool to extract features from desired 

regions of interest extending the registration algorithm to quantitatively track disease.  

Aim 3: Utilize the developed medical imaging techniques to characterize tumorigenesis 

in a variety of genetically modified, cancer prone, pig models. Changes in features were seen in 

the parenchyma and airways of the lungs in the crystalline exposure model and conditionally 

activated KRAS model. Lymphoma was quantitatively characterized through analysis of the liver 

and spleen. Similarly, osteosarcomas and renal tumors were quantitatively assessed. 

The developed methods lay a foundation for the use of porcine disease models as 

surrogates of human disease. For all models, small cohorts (n = 3 – 6) were characterized due to 

animal availability and model generation methods further enforcing the desire to develop non-

invasive methods for characterization. With regards to the advancement of medical imaging, this 

work specifically addresses areas of cross modality comparison for identifying and justifying 

optimal protocols and exploration of imaging biomarkers. This is performed in an animal model 

system which permits access to complete, validating tissue samples for histopathological, 

immunohistochemical, and/or molecular correlative studies. 
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CHAPTER 12:  FUTURE WORK 

 Several projects are planned in continuing the work described. These included 

incorporating PET imaging as an additional imaging modality, additions to the multi-level 

registration framework, and extending the feature extraction methods. 

12.1 PET imaging 

Recently, approval has been obtained through the University of Iowa IACUC for 18F-

FDG and 18F-FLT PET/CT imaging to be performed on these animal models. Previous PET 

imaging was not performed in these animals due to the lack of a research dedicated scanner at our 

institution resulting in logistical and scheduling challenges. In addition, the use of a radioactive 

tracer results in a radioactive animal for up to 20 hours after injection depending on the initial 

dosage requiring specialized housing and husbandry. The installation of a research dedicated 

PET/CT scanner, scheduled for April 2017, provides more scheduling and logistical flexibility for 

large animal research. This addition will allow for further characterization of identified tumors 

and allow for the testing and validation of novel and current radioactive tracers.   

12.2 Registration 

 We designed the multi-level registration algorithm to be modular, allowing for 

individuals to add additional preprocessing, initialization, or registration algorithms while still 

maintaining the integrity of the multi-level idea. In the future, we plan to explore improvements 

aimed at initialization and additional registration options.  

One of the limitations for the developed multi-level registration algorithm was the wide 

variety of initialization techniques used depending on the differences in image coverage. 

Algorithms have been previously designed to identify similar features in two images and use 

identified features for landmark based registration. These algorithms have been previously used 

for multimodal medical image registrations and stitching of MRI images [119, 121]. Future work 

incorporating these algorithms may provide a more robust initialization of images given a large 

disparity in image coverage.  

The current multi-level registration algorithm utilizes a rigid transform allowing for 

rotation, translation, and anisotropic scaling. While this has proved well for alignment of 

longitudinal datasets, the inclusion of an additional non-rigid transform following rigid alignment 
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is of interest to further improve the overlap of desired structures. Considerations for this 

algorithm include limitations on the amount of deformation allowed depending on the identified 

change in disease between time points and the need for it to be inverse consistent for desired use 

with the longitudinal feature extraction tool.  

12.3 Correlation with pathology 

 We presented the development of a tool for longitudinal feature extraction using the 

results from the multi-level registration algorithm. Future work includes incorporating the ability 

to extract additional features from regions of interest in all datasets with regional matching to 

occur [49]. In addition, we plan to integrate automatic segmentation of structures using an initial 

identified region propagated through each image. This will expand our ability to analyze change 

in tumor shape over time. With longitudinal monitoring of tumor progression of models, these 

quantitative imaging features and characteristics can then be correlated with pathology results for 

identification and verification of imaging biomarkers [63]. Work has previously been done by 

Sieren, et al, specifically in lung cancer, focusing on the correlation between CT and 

histopathology. These developed techniques incorporate a multi-scale imaging approach of 

complete bio-specimens to understand the representation of tumor heterogeneity in CT through 

registration with ground truth histopathology [133, 194, 195]. These models present the 

opportunity to combine longitudinal growth and feature extraction, including regional, analysis 

with complete bio-specimen histopathology confirmation. 

12.4 Additional models 

 Lastly, continued monitoring is being performed for the radiation exposure heterozygote 

animals and the conditionally activated KRAS animals with the methods described. Additional 

genetically modified large animal models have been developed by Exemplar Genetics, such as 

neurofibromatosis 1 (NF1), that are being characterized using these methods with additional 

models being developed. 
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